Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/95162
Título: | Bi-Modal Music Emotion Recognition: Novel Lyrical Features and Dataset | Autor: | Malheiro, Ricardo Panda, Renato Gomes, Paulo J. S. Paiva, Rui Pedro |
Palavras-chave: | bimodal analysis; music emotion recognition | Data: | 2016 | Título da revista, periódico, livro ou evento: | 9th International Workshop on Music and Machine Learning – MML 2016 – in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases – ECML/PKDD 2016 | Local de edição ou do evento: | Riva del Garda, Italy | Resumo: | This research addresses the role of audio and lyrics in the music emo- tion recognition. Each dimension (e.g., audio) was separately studied, as well as in a context of bimodal analysis. We perform classification by quadrant catego- ries (4 classes). Our approach is based on several audio and lyrics state-of-the-art features, as well as novel lyric features. To evaluate our approach we create a ground-truth dataset. The main conclusions show that unlike most of the similar works, lyrics performed better than audio. This suggests the importance of the new proposed lyric features and that bimodal analysis is always better than each dimension. | URI: | https://hdl.handle.net/10316/95162 | Direitos: | openAccess |
Aparece nas coleções: | I&D CISUC - Artigos em Livros de Actas |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Malheiro et al. - 2016 - Bi-Modal Music Emotion Recognition: Novel Lyrical Features and Dataset.pdf | 50.61 kB | Adobe PDF | Ver/Abrir |
Visualizações de página
284
Visto em 5/nov/2024
Downloads
138
Visto em 5/nov/2024
Google ScholarTM
Verificar
Este registo está protegido por Licença Creative Commons