Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/95162
Título: Bi-Modal Music Emotion Recognition: Novel Lyrical Features and Dataset
Autor: Malheiro, Ricardo 
Panda, Renato 
Gomes, Paulo J. S. 
Paiva, Rui Pedro 
Palavras-chave: bimodal analysis; music emotion recognition
Data: 2016
Título da revista, periódico, livro ou evento: 9th International Workshop on Music and Machine Learning – MML 2016 – in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases – ECML/PKDD 2016
Local de edição ou do evento: Riva del Garda, Italy
Resumo: This research addresses the role of audio and lyrics in the music emo- tion recognition. Each dimension (e.g., audio) was separately studied, as well as in a context of bimodal analysis. We perform classification by quadrant catego- ries (4 classes). Our approach is based on several audio and lyrics state-of-the-art features, as well as novel lyric features. To evaluate our approach we create a ground-truth dataset. The main conclusions show that unlike most of the similar works, lyrics performed better than audio. This suggests the importance of the new proposed lyric features and that bimodal analysis is always better than each dimension.
URI: https://hdl.handle.net/10316/95162
Direitos: openAccess
Aparece nas coleções:I&D CISUC - Artigos em Livros de Actas

Ficheiros deste registo:
Mostrar registo em formato completo

Visualizações de página

284
Visto em 5/nov/2024

Downloads

138
Visto em 5/nov/2024

Google ScholarTM

Verificar


Este registo está protegido por Licença Creative Commons Creative Commons