Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/8172
Title: Multiscale statistical process control using wavelet packets
Authors: Reis, Marco S. 
Saraiva, Pedro M. 
Bakshi, Bhavik R. 
Issue Date: 2008
Issue Date: 2008
Citation: AIChE Journal. 54:9 (2008) 2366-2378
Abstract: An approach is presented for conducting multiscale statistical process control (MSSPC), based on a library of basis functions provided by wavelet packets. The proposed approach explores the improved ability of wavelet packets in extracting features with arbitrary locations, and having different localizations in the time-frequency domain, in order to improve the detection performances achieved with wavelet-based MSSPC. A novel approach is also developed for adaptively selecting the best decomposition depth. Such an approach is described in detail and tested using artificial simulated signals, employed to compare average run length (ARL) performance against other SPC methodologies. Furthermore, its performance under real world situations is also assessed, for two industrial case studies using datasets containing process upsets, through the construction of receiver operating characteristic (ROC) curves. Both univariate and multivariate cases are covered. ARL results for a step perturbation show that the proposed methodology presents a steady good performance for all shift magnitudes, without significantly changing its relative scores, as happens with other current methods, whose relative performance depends on the shift magnitude being tested. For artificial disturbances, with features localized in the time/frequency domain, multiscale methods do present the best performance, and for the particular case of detecting a decrease in autocorrelation they are the only ones that can detect such a perturbation. In the examples using industrial datasets, where disturbances exhibit more complex patterns, multiscale approaches also present the best results, in particular in the range of low false alarms, where monitoring methods are aimed to operate. © 2008 American Institute of Chemical Engineers AIChE J, 2008
URI: http://hdl.handle.net/10316/8172
DOI: 10.1002/aic.11523
Rights: openAccess
Appears in Collections:FCTUC Eng.Química - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
obra.pdf762.3 kBAdobe PDFView/Open
Show full item record

Page view(s)

67
checked on Aug 14, 2019

Download(s)

68
checked on Aug 14, 2019

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.