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An approach is presented for conducting multiscale statistical process control
(MSSPC), based on a library of basis functions provided by wavelet packets. The pro-
posed approach explores the improved ability of wavelet packets in extracting features
with arbitrary locations, and having different localizations in the time-frequency
domain, in order to improve the detection performances achieved with wavelet-based
MSSPC. A novel approach is also developed for adaptively selecting the best decompo-
sition depth. Such an approach is described in detail and tested using artificial simu-
lated signals, employed to compare average run length (ARL) performance against
other SPC methodologies. Furthermore, its performance under real world situations is
also assessed, for two industrial case studies using datasets containing process upsets,
through the construction of receiver operating characteristic (ROC) curves. Both uni-
variate and multivariate cases are covered. ARL results for a step perturbation show
that the proposed methodology presents a steady good performance for all shift magni-
tudes, without significantly changing its relative scores, as happens with other current
methods, whose relative performance depends on the shift magnitude being tested. For
artificial disturbances, with features localized in the time/frequency domain, multiscale
methods do present the best performance, and for the particular case of detecting a
decrease in autocorrelation they are the only ones that can detect such a perturbation.
In the examples using industrial datasets, where disturbances exhibit more complex
patterns, multiscale approaches also present the best results, in particular in the range
of low false alarms, where monitoring methods are aimed to operate. � 2008 American
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Introduction

Most processes in modern chemical plants are typically
complex, and such a complexity appears reflected in col-

lected data, which contain the cumulative effect of many

underlying phenomena and disturbances, with different loca-

tion and localization patterns in the time/frequency plane.

Usually, not only the overall systems have a multiscale na-

ture, since they are composed of processing units that span

different timescales and frequency bands, but their inputs
(manipulation actions, disturbances, faults) can also present a
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wide variety of features, with distinct time/frequency charac-
teristics. This fact implies that even quite simple systems
cannot be effectively treated under conventional methodolo-
gies, designed to operate only at a particular scale (single
scale). For such reasons, multiscale approaches, designed to
handle and take advantage of the information contained at
different scales, have been developed for addressing different
tasks,1,2 as alternatives to the traditional single-scale method-
ologies, whose optimal performance is restricted just to a
subset of all the relevant scales. They have been applied,
among other situations, for signal and image denoising3,4 and
compression,5 process monitoring,6,7 system identification,8,9

time series analysis,10 regression, classification and cluster-
ing,11,12 and numerical analysis.13

With respect to process monitoring approaches, Shewhart
control charts and multivariate statistical process control
based on principal components (PCA-MSPC) have proven to
be adequate for the detection of large deviations occurring at
the finest scales, whereas moving-average (MA), exponentially
weighted moving-average (EWMA), and cumulative-sum
(CUSUM) charts (as well as their multivariate counterparts)
have provided very good results regarding the detection of
small shifts at coarser scales, whose particular range depends
on the tuning parameters adopted (window length or filter
constants).

On the other hand, it is known that current approaches
face problems when they have to deal with the rather com-
mon situation of analyzing autocorrelated data, arising from
a dynamic process, as they assume collected measurements
to be uncorrelated. Therefore, to be appropriately imple-
mented under such situations, they require complementary
procedures, such as fitting of a time-series model followed
by monitoring of the decorrelated residuals, an approach that
is not practical for multivariate processes of high-dimension-
ality. The residuals to be monitored can also be generated
using the one-step-ahead prediction from a moving center-
line EWMA model (MCEWMA), together with the collected
measurements,14 a procedure which is best suited for inte-
grated moving-average processes (IMA), therefore, lacking
the generalization ability to other cases. Another approach,
also found in the literature, called dynamic PCA, consists of
expanding the measurement matrix with time-lagged varia-
bles, in order to capture autocorrelation in the PCA modeling
stage.15,16 However, as in all of the aforementioned techni-
ques, one still ends up focused at a single-scale, since the ba-
sis functions used in such data representations maintain the
same support in the time-frequency plane at all locations.

To overcome such limitations, multiscale statistical process
control (MSSPC)7 provides a valid alternative process moni-
toring methodology, with the highly desirable features of
being sensitive to a wide range of faulty patterns (with dif-
ferent magnitudes and localizations in the time-frequency
plane), arising from a variety of processes (either uncorre-
lated or with autocorrelation). In the multivariate case, it
combines the ability of PCA, for decorrelating the variables’
covariance, with that of wavelets, for (approximately) decor-
relating the serial dependencies (autocorrelation) of signals.
Process monitoring, is, therefore, conveniently performed in
a space where variability can be described in simpler terms,
without loosing effectiveness, through a procedure that com-
prises two main stages (Figure 1).

In the first stage, a preliminary monitoring task is con-
ducted over the space of the PCA scores of wavelet coeffi-
cients at each scale, where the transformed variables appear
now decorrelated, either in the variable direction (by PCA),
or in the time direction (by the wavelet transformation). In
this stage, significant events at each scale are detected, and
those scales where such events do occur are selected to be
used in the reconstruction of the signal at the finest scale,
which can be considered as a feature extraction operation for
a potential fault pattern. Then, in a second stage, over such a
reconstructed signal a final statistical test is performed, in
order to decide about the state of operation (normal or abnor-
mal). This final stage of monitoring, performed in the origi-
nal time domain, aims to avoid false alarms when the pro-
cess returns back to normal operation, something that would
otherwise occur due to the existence of significant events in
the detail coefficients for finer scales (that are only sensitive
to changes in the signals), as well as to allow for the contin-
uous detection of a sustained shift, after it occurs, which
may not be detected at the finer scale detail levels, because
no change is occurring after an initial period of time has
gone by.

Several modifications have been introduced to this basic
MSSPC methodology, such as its integration with monitoring
methods specialized in detecting changes over the data statis-
tical distribution,17 or the use of variable grouping and the
analysis of contribution plots when an event is detected in
the control charts at any scale, in order to monitor the pro-
cess and simultaneously perform early fault diagnosis.18

Other contributions include the development of nonlinear
process monitoring approaches, similar to MSPCA, but with
a nonlinear modeling step, by using neural networks.19,20

Rosen21 presented an alternative methodology, where the
components at different scales in the original time domain
are combined using background knowledge about the pro-
cess, in order to reduce the number of monitoring statistics
available when all the scales are monitored separately and to
provide physical insight with regard to the scales under anal-
ysis. Yoon and MacGregor22 have also developed an
approach, based on a multiscale representation of data in the
original time domain, that encompasses the successive
extraction of principal components for the extended set (all
variables represented at all scales), according to the decreas-
ing magnitude of eigenvalues, thus, leading to a rank of the
relevant structures underlying data variability, regarding the
contributions from the variables covariance at different
scales.

The added detection flexibility of MSSPC, in order to
adapt to different types of disturbances, effectively extracting

Figure 1. Wavelet-based multiscale statistical process
control (MSSPC).
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their patterns by analyzing the significant scales involved,
arises from a different way of representing data. Such a rep-
resentation consists of using basis functions, called wavelets
that do span the time-frequency plane in different ways,
allowing for adaptation to the signal’s energy distribution in
this domain (the time-frequency domain). These basis func-
tions present good time resolution for high-frequency events
and good frequency resolution for low-frequency patterns, in
which case they are associated with longer time resolutions,
since the mathematical inequality rðwÞ � rðŵÞ � 1=2 (ŵ rep-
resenting the Fourier transform of w), has to be satisfied (this
is also the key inequality of the Heisenberg uncertainty prin-
ciple23,24). This type of coverage for the time-frequency
plane is indeed adequate in a large class of signals, making
of wavelets effective tools for analyzing a wide variety of
datasets, particularly regarding those situations that present
features at distinct locations and with different localizations
in the time-frequency plane, or regarding nonstationary
phenomena. One example of such a signal is presented in
Figure 2, which corresponds to a sensor failure due to oil
accumulation (it represents the difference between the read-
ings of two redundant sensors, one of which is faulty).

This abnormal situation comprises an initial stage, where
the disturbance does have a relatively small magnitude and
presents an oscillatory pattern (usually difficult to be detected
by current methodologies), whose magnitude grows along
time, until the fault fully manifests itself as an high-magni-
tude steady change, after some spikes, also of high-magni-
tude. Clearly, such a pattern contains multiscale features,
since its spectrum spans quite different regions of the fre-
quency domain along time.

Even though wavelets already offer an effective (i.e., com-
pact) representation, for most complex signals, it is possible
to develop new basis sets, that can provide even more flexi-
ble descriptions of such patterns, and may be tailored for
achieving optimal data representations (optimality being
assumed here in a given sense, to be specified a priori), with
the wavelet basis being just a particular case of such a vari-
ety. Broader basis sets can be obtained under the context of
wavelet packets, which are basically libraries of functions,
from which it is possible to extract a number of basis sets

with functions that can have a greater variety of covertures
over the time-frequency plane. Furthermore, it is possible to
choose the most adequate basis set for a given application in
an efficient way, using specialized search algorithms (such as
the ‘‘best basis’’ algorithm25), associated with a particular
cost function that provides the necessary quality measure to
drive the optimization search among all the possible sets
(e.g., entropy, threshold or lp norm cost24,26). For instance,
regarding the signal presented in Figure 2, it is possible to
come up with a basis set that provides a more compact repre-
sentation for a given number of retained expansion coeffi-
cients, i.e., whose retained energy (squared norm of signal
vector), for a given number of retained coefficients, is the
highest (Figure 3). The reason why the difference, in this
particular case, is not very significant, arises from the fact
that the best basis derived for this signal is quite close to the
wavelet basis.

In the context of chemical engineering and related fields
of knowledge, wavelet packets have been mostly used in
compression and denoising applications,27–31 following the
main stream of applications for wavelet-based approaches.
However, other developments have also been achieved, that
explore the possibility of choosing the most adequate basis
set for a given application, namely in pattern recognition and
classification analysis,12,32 as well as in the sometimes
related problem of fault detection, as happens for instance
with the detection of partial discharges in gas-insulated sub-
stations,33 or regarding gap abrasion of main bearing in die-
sel engines, where a pattern matching methodology was
adopted using images of the phase space (time-frequency
plane) obtained through the application of wavelet packets to

Figure 2. Process disturbance with multiscale features
embedded (a sensor failure due to an oil
accumulation event).

Vertical lines indicate the onset and the end times of the
disturbance.

Figure 3. Curves of percentage of coefficients retained
vs. percentage of signal’s energy retained,
using a wavelet basis (Daubechies-4 with five
decomposition levels), and a basis set chosen
from the corresponding wavelet packet de-
composition, selected by the best basis algo-
rithm implementedwith an entropy criteria.

Calculations were conducted in the Matlab platform (The
MathWorks, Inc.) using the WavLab package (available at
http://www-stat.stanford.edu/;wavelab) and code written by
the authors.
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noisy measurements, adequately taken at the exterior of the
engine.34

With regard to process monitoring, Li and Qian35 pre-
sented an approach that involves a preliminary wavelet
packet analysis stage, followed by application of PCA to
extract the linear relationships present in data and of a non-
linear mapping technique (input-training neural network, IT-
net) for modeling any nonlinearities that might also be pres-
ent. However, these authors do not provide any comparative
results with alternative methodologies, regarding the perform-
ance of their approach. Developments concerning condition
monitoring of vibration in industrial machinery have also
been reported by Yen and Lin,36 where wavelet packets were
adopted to provide the means for generating a rich prediction
space for classification of operation status, which is then sub-
mitted to a dimension reduction operation, so that best fea-
tures for analysis are identified, and later on selected.

In this article, we present a multiscale statistical process
control procedure that uses a wavelet packet analysis of suc-
cessively collected measurements, in order to effectively
extract faulty patterns that may be immersed in such stochas-
tic signals. In the next section, we provide a brief introduc-
tion to wavelet analysis and explain how wavelet packets
emerge from it, exploring their connection and addressing
the potential advantages of using such an alternative data
representation. Then, in the Multiscale Statistical Process
Control Using Wavelet Packets (WP-MSSPC) section, we
describe the proposed multiscale statistical process control
approach based on wavelet packets (WP-MSSPC). Next,
results obtained for two sets of comparative studies, encom-
passing WP-MSSPC and other approaches available in the
literature, are presented and discussed. The first one involves
an analysis of their performances under simulated scenarios
(average run length study, ARL), while the second is devoted
to their application in real world industrial situations (based
on the receiver-operating characteristic, ROC, curves). We
finalize with a summary of the main conclusions reached.

Theoretical background

Wavelets. Wavelets correspond to particular types of
functions, whose location and localization characteristics in
the time/frequency plane are ruled by two parameters: both
the localization in this plane, and location in the frequency
domain are determined by the scale parameter s, whereas
location in the time domain is controlled by the time transla-
tion parameter b. Each wavelet ws,b(t), can be obtained from
the so called ‘‘mother wavelet’’ w(t), through a scaling opera-
tion that ‘‘stretches’’ or ‘‘compresses’’ the original function,
establishing its form, and a translation operation, that con-
trols its positioning in the time axis:

ws;bðtÞ ¼
1ffiffiffiffiffijsjp w

t� b

s

8>: 9>; (1)

The shape of the mother wavelet is such that it has an equal
area above and below the time axis. As a result, besides hav-
ing a compact localization in this axis, wavelets do also
oscillate around it. In the continuous wavelet transform
(CWT), scale and translation parameters vary continuously,
constituting a redundant transformation. Therefore, in order

to construct a basis set, these parameters should be appropri-
ately sampled, so that the set of wavelet functions parameter-
ized by the new indices (scale index j, and translation index
k) does cover the time-frequency plane in a nonredundant
way. Such a sampling strategy consists of applying a dyadic
grid, in which b is sampled more frequently for lower values
of s, and where s grows exponentially with the power of 2
(dyadic discretization):

wj;kðtÞ ¼ ws;bðtÞ��� s¼2j
b¼k�2j

¼ 1

2j=2
w

t� k � 2j
2j

� �
¼ 1

2j=2
w

t

2j
� k

� �

(2)

Within the scope of a multiresolution (or multiscale) decom-
position framework, developed by Mallat,24,37,38 it is possible
to decompose any signal x, into its contributions at different
scales, ranging from the finest ones (low-values for scale
index j, corresponding to high-frequency contents) to the
coarsest ones (higher-scale index values, associated with
low-frequency components). This can be done by expanding
the signals using wavelet functions for the intermediate
scales (i.e., between the finest and coarsest scales of analysis)
and scaling functions for the coarsest scale (that conveys in-
formation for all scales higher than the maximum scale used
in the analysis), which, altogether, form a basis set. The
expansion coefficients can be computed very efficiently, with
computational complexity O(n), through a recursive proce-
dure proposed by Mallat,38 that essentially consists on the
successive application of quadrature mirror filters followed
by dyadic downsampling. There are two types of filters
involved in this analysis: one providing the wavelet trans-
form coefficients relative to the lower frequency band of the
signal Hj, while the other leads to the coefficients corre-
sponding to the higher frequency band of the signal Gj. In
the wavelet transform, only the coefficients for lower fre-
quency bands are successively decomposed, as indicated in
Eq. 3 (where matrices that implement such filtering schemes
are used), and illustrated in Figure 4.

Figure 4. Wavelet decomposition procedure, where
only the low-frequency coefficients (vectors
aj) are successively subjected to filtering
operations.
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a0 ¼ x ðoriginal signalÞ
a1 ¼ H1a0; d1 ¼ G1a0

a2 ¼ H2a1; d2 ¼ G2a1

a3 ¼ H3a2; d3 ¼ G3a2

..

.

aJ ¼ HJaJ�1; dJ ¼ GJaJ�1 ð3Þ

The low-frequency coefficients are the so-called approxima-
tion coefficients (a’s), while those for the high-frequency
bands are the detail coefficients (d’s). They are the multi-
pliers of the basis functions: approximation coefficients are
associated with the scaling functions, and detail coefficients
with wavelets.

Wavelet Packets. In the wavelet decomposition, only the
approximation coefficients are successively decomposed by
the application of quadrature mirror filters Hj and Gj. In
terms of vector spaces, this amounts to say that only the
approximation spaces are decomposed into new coarser
approximation and details spaces, which are orthogonal to
each other. In terms of the basis functions for these spaces,
namely for the detail spaces, this implies that they lose
time resolution as the decomposition depth increases, gain-
ing, on the other hand, frequency definition, since such a
decomposition scheme originates wavelet basis with con-
stant relative bandwidth (the so-called constant-Q scheme).
Introduced by Coifman, Meyer and Wickerhauser,24 wavelet
packets result from the decomposition of not only the suc-
cessively coarser approximation spaces, but also of the
associated detail spaces. In practice, this corresponds to the
successive application of quadrature mirror filters to both
approximation and detail coefficients (Eq. 4), as illustrated
in Figure 5.

w0
0 ¼ x ðoriginal signalÞ

w1
0 ¼ H1w

0
0; w

1
1 ¼ G1w

0
0

w2
0 ¼ H2w

1
0; w

2
1 ¼ G2w

1
0; w

2
2 ¼ H2w

1
1; w

2
3 ¼ G2w

1
1

w3
0 ¼ H3w

2
0; w

3
1 ¼ G3w

2
0; w

3
2 ¼ H3w

2
1; w

3
3 ¼ G3w

2
1;

w3
4 ¼ H3w

2
2; w

3
5 ¼ G3w

2
2; w

3
6 ¼ H3w

2
3; w

3
7 ¼ G3w

2
3

..

. ð4Þ

The further decomposition of detail spaces, now undertaken,
originates new basis functions for such subspaces that tile
the time-frequency plane differently. It also leads to a situa-
tion where we have a number of possible basis functions sets
available for representing the signal (more than 22

J21

, for a
decomposition depth of J24). Therefore, it is possible to
choose the one that best suits our data analysis purposes, be
it compression, classification, or, as in this situation, fault
pattern extraction for process monitoring. Following the
decomposition scheme presented in Figure 5, we will refer to
each vector of wavelet packets coefficients by the nodes of
such a binary tree, which can be indexed using the pair (j,
p), where index j stands for the decomposition depth (j 5 0:
Jdec, with 0 regarding the original signal), and p is the hori-
zontal position given by the number of nodes that are to the
left for depth j (p 5 0: 2j 2 1). One should notice that index

p does not order the basis functions, at a given j, in the sense
of covering increasing frequency regions (Paley ordering),
something that would require swapping the branches from
some nodes.24,36

Figure 6 presents the basis functions waveforms obtained
for the Haar case (also known as Walsh wavelet packets),
from which we can see that a wider variety of shapes can be
indeed more effectively represented through their adequate
combination. As an illustrative example of such a capability,
we present the results derived from analyzing an artificial
signal, with 1,024 observations consisting of i.i.d. Gaussian
white noise with a standard deviation of 2, where, after ob-
servation 512, a sinusoidal component, with unit magnitude
and frequency 0.7813p rad, begins to develop and lasts until
the end of the time series. The full wavelet packet table of
coefficients, resulting from the decomposition (using a Dau-
bechies-6 filter) of this signal, is presented in Figure 7. The
original signal lies at the top, where a quick visual inspection
only barely indicates the onset of the sinusoidal perturbation.
Also signaled in this figure are the coefficients for the stand-
ard wavelet basis (boxes with thick lines), where, once again,
it is not very easy to spot the time instant where the change
has occurred. This implies that conventional MSSPC may
not be able to appropriately detect this sinusoidal change.
However, there are other nodes in the wavelet packet tree
whose coefficients are quite sensitive to this disturbance, so
that the transition time can be easily pointed out, as hap-
pens, in this case, for the signal in the dashed box. In fact,
the best basis tree for this example, using an entropy crite-
rion for conducting the best basis algorithm, is quite differ-
ent from the standard wavelet basis, as depicted in Figure 8,
where the binary trees, associated with each basis, are pre-
sented. We can see that more wavelet packet coefficients,
relative to nodes closer to the dashed boxes, are picked up,
being also responsible for strong improvements in the
assumed cost criteria.

Figure 5. Illustration of the wavelet packet decomposi-
tion tree, where both the low-frequency and
high-frequency components of each signal at
a finer scale (vectors wn

j ) are successively
subjected to the quadrature mirror filtering
operations.
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Figure 6. Waveforms for the basis corresponding to each node of the wavelet packet tree (there are n/2 j translated
versions at each node, but only the first one is presented for illustration purposes).

The associated indices (j, p) are indicated at the corresponding diagrams on the left of the waveforms (the signal’s length is n 5 16).
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 7. Wavelet packet decomposition of an artificial
signal consisting of white noise with a sinu-
soidal disturbance superimposed during the
second half of the interval (a Daubechies-6
filter was used with Jdec 5 5).

Figure 8. Binary trees representing the nodes whose
basis functions participate in the (overall) ba-
sis set, for the standard wavelet base (a),
and for the best basis of the wavelet packet
tree (b), using an entropy criterion, for the
signal analyzed in Figure 7.

The height of each branch is proportional to the improve-
ment in the cost function (entropy) obtained after each
splitting. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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Multiscale Statistical Process Control Using
Wavelet Packets (WP-MSSPC)

The proposed WP-MSSPC approach follows the basic

sequence of steps that have been proven to be successful for

conducting wavelet-based MSSPC (Figure 1), but with major

modifications introduced in the multiscale decomposition

stage. Instead of applying a wavelet orthogonal transforma-

tion, we introduce a wavelet packet redundant decomposi-

tion. This also implies redesigning all the subsequent stages,

namely regarding the selection of ‘‘significant scales’’, thus

giving rise to the selection of a ‘‘significant and proper ba-

sis’’ for describing the pattern of a potential disturbance.

The overall procedure can be conceptually divided into an
initialization stage and an implementation stage (Table 1). In
the preliminary initialization stage, user-defined features and
parameters of the method are selected, namely the type of
wavelet packet filter to use, the maximum possible decompo-
sition depth to be considered (unlike existing MSSPC meth-
ods, this approach can select the actual depth adaptively for
each window of data, as discussed later), the level of signifi-
cance to be used in statistical tests (probabilistic control lim-
its), and the number of principal components to be adopted
(for the multivariate case). Furthermore, using historical data
from normal operation, the normal operation condition
(NOC) regions, at each wavelet-packet node, are also
defined, using the transformed data and significance levels
previously defined.

In the implementation stage, as new data gets acquired
(with dyadic length, to allow the proper computation of
wavelet packet coefficients), wavelet packet coefficients are
computed, with the last coefficient at each node being
retained for analysis of its significance, through the nodes’
specific SPC charts. If no significant activity is registered at
any node (all current coefficients fall within statistical control
limits), the method proceeds to the next data window. How-
ever, if some coefficients are found to be significant, our
method picks up only those and adopts the corresponding
wavelet packet basis, which represents the potential abnormal
patterns more efficiently. It is this flexible basis selection
strategy that allows for the adaptive selection of decomposi-

tion depths. In fact, the decomposition depth effectively used
in the analysis is the one that corresponds to the coarsest sig-
nificant wavelet packet coefficient, and not the maximal
decomposition depth defined initially. As a result, decompo-
sition proceeds deeper (increasing decomposition depth) if no
significant coefficients are identified, until the maximum
specified depth is reached. On the other hand, if significant
coefficients are identified before reaching the maximum
depth, the decomposition does not need to go any deeper.
The advantageous consequences of this strategy are discussed
more thoroughly later. Then, using only the significant coeffi-
cients, our algorithm computes the corresponding pattern in
the original time domain and the statistical limits of the SPC
chart to be used for performing the final and confirmatory
significance tests. These limits are computed from knowledge
about the wavelet packet basis adopted and the statistical
quantities estimated from normal operation data at each
node, in the initialization stage. If the reconstructed trend is
found to be significant (falls outside statistical control limits)
then this pattern is confirmed to be abnormal. On the other
side, if it is not statistically significant, no signaling is pro-
duced, and process monitoring moves to the next data win-
dow. More details of the proposed approach can be found in
its pseudocode, presented in Table 1.

The implementation described in Table 1 relates to a
dyadic discretization scheme for building the current data
windows, over which the wavelet packet analysis and subse-
quent monitoring procedures are implemented, at each step.
Dyadic and integer discretization are the two modes currently
used for implementing MSSPC approaches. The first one is
based on a nonredundant (orthogonal) representation of data
along time, which allows for an approximate decorrelation of
autocorrelated measurements, at the expense of introducing
some time delay in the analysis. The second one uses a
redundant representation, due to the implicit suppression of
downsampling, leading to a decreased decorrelation ability,
but with the advantage of enabling on-line real-time imple-
mentations. These two discretization procedures appear illus-
trated in Figure 9. The pseudocode of Table 1 is also valid
for the integer discretization mode, after replacing all code
instructions containing 2k by k.

Table 1. Pseudocode for WP-MSSPC (with Dyadic Discretization)

Initialization
1. Define wavelet packet filter (Wave);
2. Define maximum decomposition depth (Jdec);
3. Define level of significance (a);
4. Compute the wavelet packet decomposition of the training data set, and calculate the mean and variance (univariate case) or variance-

covariance matrices (multivariate case) for data blocks at each node;
5. In the multivariate case, select also the number of principal components to retain in the PCA models at each node.

Implementation
1. For each new point with an even time index (2k,k [ h):
a. Select data contained in a window of maximal dyadic length (2Jwind(k)), such that Jwind(k) � Jdec: Xwind(2k);
b. Calculate the wavelet packet table for Xwind(2k): WPXwind(2k);
c. Get current coefficients from the blocks of data corresponding to each node of WPXwind(2k): Coef

wind
curr (2k);

d. Select, among the current coefficients, Coefwindcurr (2k), those that are relative to significant events, at the predefined level of significance a:
*Coefwindcurr (2k);

e. Construct a new wavelet packet table containing only the current significant coefficients, *Coefwindcurr (2k):
*WPXwind(2k);

f. Reconstruct data using a basis set compatible with *WPXwind(2k): Xrecwind(2k);
g. Combine variance (univariate case) or variance-covariance matrices (multivariate case) relative to significant events and test whether the

reconstructed signal is significant or not at the level of significance a, using univariate SPC (Shewhart) or multivariate SPC (PCA-MSPC);
h. If the reconstructed signal is significant, signal it as a special event;

2. k / k 1 1, GO TO 1.
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One important feature of WP-MSSPC is its ability to auto-
matically select the adequate decomposition depth for repre-
senting each significant pattern, a desirable property not
shared by wavelet-based MSSPC approaches. For such
approaches, a maximum decomposition depth is always per-
formed. This raises the issue that one needs to find out the
most adequate decomposition depth for performing wavelet-
based MSSPC, since a too fine decomposition depth leads to
a quite noisy last scaled signal (aj), and a limited decorrela-
tion ability, whereas a too coarse decomposition depth leads
to very few coefficients being used for estimating the NOC
statistics, therefore affecting the accuracy of SPC at coarser
scales, which also somewhat distorts the reconstructed
extracted features. Such a rather problematic trade-off, is,
therefore, overtaken by our proposed adaptive depth selection
strategy. The selected basis, from the wavelet packet tree,
depends strictly on the coefficients found to be significant.
Furthermore, theoretically, WP-MSSPC subsumes wavelet-
based MSSPC, as the data decomposition in which this
method is based corresponds to one out of the many possible
basis sets available in the wavelet packet library of WP-
MSSPC.

Average Run Length (ARL) Analysis
of WP-MSSPC

In this section, we compare the univariate versions of WP-
MSSPC (dyadic and integer) with other existing SPC meth-
odologies in their capability to detect several perturbations
(step change, sinusoidal perturbation, appearance of autocor-
relation) in an uncorrelated homogeneous process with unit
variance xi ; i.i.d.N(0,1), i 5 0,1,2, . . . (where i.i.d. stands
for an ‘‘independent and identically distributed’’ random
variable following, in this case, a zero mean Gaussian distri-
bution with unit variance), as well as a decrease in the auto-
correlation parameter of an AR(1) dynamic process, by
computing their average run length (ARL) performance over
various perturbation magnitudes. ARL is the average number
of observations required to detect a shift after it begins. In
this study it was determined through Monte Carlo simula-
tions. In order to make all methods comparable in a fair

way, control limits were previously adjusted, so that the dif-
ferent techniques present the same ARL(0) performance, i.e.,
the same ARL scores in the absence of any process shift.
The SPC methods analyzed here were the following: She-
whart,39 moving-average (MA, with an averaging time sup-
port of 2Jdec observations, to maintain results comparable with
MSSPC approaches),40 and exponentially-weighted moving
average control charts (EWMA, with k 5 0.2),41 MSSPC7

(based on wavelets, in the dyadic and integer discretization
modes), and WP-MSSPC (also implemented in both the
dyadic and integer discretization modes). All decompositions
were based on the Haar wavelet filter (with Jdec 5 3).

Step perturbation

ARL results for mean shifts of increasing magnitude, fol-
lowing a step perturbation, are presented in Figure 10, where

Figure 9. Discretization strategies used in MSSPC methodologies: (a) dyadic discretization, and (b) integer or uni-
form discretization.

(Example for the Haar wavelet with Jdec 5 3). Circles represent wavelet coefficients at each scale (observations are acquired at scale j 5
0, and used to compute the coefficients at scale j 5 1, represented immediately above, and these then used to compute coefficients at scale
j 5 2, represented in the next level, and so on, until the decomposition depth, j 5 3 5 Jdec is attained). Arrows indicate the coefficients
that are computed at each time step. It is clear that in the dyadic case, there are time steps where no coefficients are computed (at odd val-
ues for the time index), and for the coefficients at coarser scales the delay involved is even larger.

Figure 10. ARL curves for a step perturbation in the
mean, where all MSSPC methods presented
are implemented with a dyadic discretiza-
tion scheme.
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only MSSPC methods with dyadic discretization are plotted,
for the sake of discerning all trends involved. Those relative
to the integer discretization mode are presented in Figure 11.
In the dyadic implementation (Figure 10) it is possible to see
that WP-MSSPC considerably enhances the detection ability
of wavelet-based MSSPC for shifts of magnitude higher than
1. The best performances are achieved by MA and EWMA
for shifts of small magnitude, and Shewhart control charts
for high-magnitude shifts. This relative performance of con-
ventional methods is well known, and the observed behavior
of the multiscale methods is due to the simplicity of the per-
turbation adopted, which presents a clear location in the
time-frequency domain, therefore, creating the necessary con-
ditions for single-scale approaches to perform well, as they
were designed to operate optimally only at a certain scale.
However, one should notice that, as soon as the perturbation
magnitude leaves the optimal range, where each conventional
method is designed to operate well, their relative perform-
ance, when compared with other methodologies, degrades
considerably, something that does not happen with WP-
MSSPC, which keeps its ARL difference to the best
approaches approximately constant over the whole spectra of
shift magnitudes, due to its adaptation capabilities to the
characteristic scale of the perturbation taking place. The
adaptive decomposition depth and library of basis functions
available in WP-MSSPC make it possible that, even with
dyadic discretization, one does not have to wait until enough
coefficients are obtained to detect a shift. In contrast, conven-
tional MSSPC, despite using windows of data with the same
length as WP-MSSPC, does not perform as well in the fault
detection, due to the adoption of a fixed set of basis func-
tions (only one of the many representatives contained in the
library explored by WP-MSSPC), thus preventing an efficient
extraction of features from shorter time windows. The same
comments can be made regarding the results shown in Figure
11, but where the observed performances for MSSPC and
WP-MSSPC are now quite similar, in the integer implemen-
tation mode, mainly because the effect of time delay in

obtaining the scaled signal coefficients in MSSPC is elimi-
nated under this mode. However, integer discretization
requires additional computation and benefits of the decorrela-
tion ability associated with orthonormal wavelets may
become more reduced.

Increase in autocorrelation

Analyzing now what happens when an uncorrelated pro-
cess suddenly acquires some autocorrelation (characterized
by the autocorrelation parameter f [ [0,1], Eq. 5),

XðkÞ ¼ / � Xðk � 1Þ þ eðkÞ
eðkÞ � i:i:d:Nð0; 1Þ
/ ¼ 0ðk ¼ 1 : KÞ ! / ¼ Dðk ¼ K þ 1 : endÞ

(5)

one can observe that multiscale methods present the same
kind of intermediate performance behavior as before. WP-
MSSPC is slightly better than its wavelet-based counterpart
in the dyadic situation (Figure 12).

Sine perturbation

In this case, our perturbation consists of a sine wave with
frequency x 5 0.7813p rad (as the one considered in Fig-
ure 7), whose magnitude increases from zero, under normal
operation conditions to D 5 {0,0.5,1,2,3}. Figure 13 presents
the results obtained when all MSSPC methods are imple-
mented with dyadic discretization. We can see that MSSPC
methods (especially WP-MSSPC) tend now to perform better
over the whole range of magnitudes, in particular regarding
the small amplitudes regions, where fault detection is particu-
larly difficult. The same general conclusions hold for the in-
teger implementation mode, as can be seen from the results
presented in Figure 14. This example illustrates that it is pos-
sible, in general, to encounter simple perturbations for which
some method performs better than the others. In this case,

Figure 11. ARL curves for a step perturbation in the
mean (MSSPC methods implemented in the
integer discretization mode).

Figure 12. ARL curves for an increase in the autocorre-
lation parameter, from / 5 0 (uncorrelated
process) to / 5 D 5 {0.3,0.6,0.9,1} (MSSPC
methods implemented in the dyadic discreti-
zation mode).
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for instance, the multiscale methods take advantage of their
better detection sensitivity for perturbations well localized in
the frequency domain, due to the way they represent data.
Therefore, the type of knowledge acquired through this rea-
soning (methods performance evaluation under simple pertur-
bation scenarios), while being certainly valuable for getting
acquainted about the strengths and weaknesses of each alter-
native, also presents limitations, due to its case-based nature.

Decrease in autocorrelation

To finalize this section, regarding the comparison of meth-
ods’ performances using Monte Carlo simulations, we ana-

lyze a situation where the system under normal operation is
described by the following AR(1) process: X(k) 5 /NOC � X
(k 2 1) 1 e(k), with /NOC 5 0.5, and e(k) ; iid N(0,1). In
this example, we tested all the different methods in the
detection of a decrease in the autocorrelation parameter,
from the normal operation conditions value of /NOC 5 0.5,
to 0.5 (no change), 0.3, 0.1 and 0, i.e., with shifts of magni-
tude: /NOC 2 /i {0,0.2,0.4,0.5}. Furthermore, in each trial,
the variance of e(k) was also adjusted, so that the overall
variance of X(k) was kept constant over the whole time se-
ries, in order to make detections more difficult. Figures 15
and 16 present the results obtained. We can see that, in this
case, the only methodologies that are able to detect such a
perturbation are indeed the multiscale methods. In fact, all
the remaining methodologies worsen their performance as
the magnitude of the change increases, even though other
techniques, not included in this study, might also have poten-
tial to detect such a type of perturbation.17 These results are
essentially explained by the good frequency resolution of the
multiscale monitoring methods, arising from the nature of
their basis functions, which allows for an effective monitor-
ing of the signal’s power spectra. This makes them able to
detect changes in energy from one band to the other, some-
thing that single-scale methodologies are not always able to
achieve (as demonstrated in this example), since they center
monitoring efforts at a single, loosely defined, frequency
band.

Industrial Case Studies

The artificial perturbations used in the previous section, to
evaluate the methods’ performances through Monte Carlo
simulations, are quite simple in nature, even though useful to

Figure 14. ARL curves for the sinusoidal perturbation
(MSSPC methods implemented in the inte-
ger discretization mode).

Wave frequency is 0.7813p rad and amplitudes studied
are {0,0.5,1, 2,3}.

Figure 15. ARL curves for a decrease in the autocorre-
lation parameter of an AR(1) process: Di 5
/NOC 2 /i, being the normal operation con-
dition value of the parameter, /NOC 5 0.5
(variance of e(k) was adjusted so that the
overall variance of X(k) is kept constant).

All MSSPC methods were implemented with a dyadic
scheme.

Figure 13. ARL curves for the sinusoidal perturbation
(MSSPC methods implemented in the
dyadic discretization mode).

Wave frequency is 0.7813p rad and amplitudes studied
are {0,0.5,1, 2,3}.
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provide reference scenarios for a preliminary comparative
assessment. However, in industrial environments, faults tend
to manifest themselves through much more complex patterns,
presenting features that spread out through several time-fre-
quency regions. Therefore, it is also important to test and
evaluate the performances of the different methods under
such circumstances.

In this section, we present two real world case studies and
analyze the performance of several monitoring methodologies
in the detection of abnormal situations occurring in each
dataset (provided by the Abnormal Situation Management
Consortium). As no ARL study can be conducted in this sit-
uation, the performances achieved by the various methodolo-
gies are compared by plotting their empirical receiver-operat-
ing characteristic (ROC) curves, a common approach used
for assessing classification algorithms in two-class problems.
They correspond to a plot of the ‘‘true positive rate’’ (TPR)
versus ‘‘false positive rate’’ (FPR). TPR corresponds to the
fraction of points for which the detection limits are violated
in the region where abnormal operation is known to be pres-
ent. FPR, on the other hand, is the fraction of points for
which detection limits are violated in the region where nor-
mal operation is known to be present. ROC curves are drawn
by varying the methods thresholds (control limits) T, and
computing the two detection rates: FPR (Ti) vs. TPR (Ti),
Ti [ [Tmin, Tmax]. TPR and FPR are, thus, related to the
notions of sensitivity and specificity.42,43 Sensitivity is the prob-
ability of detecting the abnormality, given the true state to be
abnormal (TPR), while specificity is the probability of not
detecting the abnormality, given the true state to be of normal
operation (1 2 FPR). In each of the following case studies, the
region of abnormal operation was determined from process op-
erator inputs and specific knowledge available.

Sensor malfunction due to an oil accumulation event

This case study involves a sensor malfunction. The corre-
sponding dataset is the result of taking the difference
between the readings from two redundant sensors, when one
of them undergoes a faulty situation due to oil accumulation
(Figure 2). The overall performance of the methods (consid-
ering only the dyadic implementation of MSSPC
approaches), over the entire signal, is given in terms of their
empirical ROC curves, reported in Figure 17. We can see
that WP-MSSPC presents the best performance, as it leads,
almost over the entire plot, to the highest TPR scores (higher
sensitivity) for any given FPR value. Focusing now only on
the MSSPC methods (Figure 18), we can also see that the
two WP-MSSPC implementations outperform their MSSPC
counterparts, even though MSSPC performance is also quite
good in the integer discretization mode. In summary, WP-

Figure 17. ROC curves for the ‘‘oil accumulation event’’
(MSSPC methods were implemented with a
dyadic discretization scheme).

Figure 16. ARL curves for a decrease in the autocorre-
lation parameter of an AR(1) process: Di 5
/NOC 2 /i, being the normal operation con-
dition value of the parameter, /NOC 5 0.5
(variance of e(k) was adjusted so that the
overall variance of X(k) is kept constant).

All MSSPC methods were implemented with an integer
scheme.

Figure 18. ROC curves for the ‘‘oil accumulation event’’:
comparison ofMSSPC approaches.
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MSSPC does not perform worse then MSSPC, and often
does much better, due to the increased sensitivity provided
by the nature of the basis functions adopted in WP-MSSPC
(derived from the wavelet packet library), which makes it
able to extract more effectively, and, therefore, detect in an
easier way any abnormal patterns present in the signal.

Furnace feed event

This case study addresses a multivariate situation, where
measurements were collected from 10 different sensors
located in a furnace from a real petrochemical process. A
disturbance has occurred in the furnace feed, and the faulty
operation measurements, for the different variables, can be
seen in Figure 19.

These measurements were autoscaled (centered to zero
mean and normalized to unit variance, using the mean and
standard deviation computed from normal operation data)
and the multivariate versions of the several MSSPC method-
ologies applied, as well as PCA-MSPC, for comparison pur-
poses. Since there are now two monitoring statistics (T2 and
Q or SPE), a significant event is considered to occur when at
least one of them exceeds the corresponding statistical con-
trol limits. Five principal components were retained in all
PCA models. The results obtained are presented in Figure
20, where both WP-MSSPC approaches (dyadic and integer)
present the best overall performance (the dyadic implementa-
tion of MSSPC, once again, faces some problems, which do
not fall in the region of the ROC curve analyzed).

Conclusions

In this article, we presented an approach for conducting
MSSPC using a library of basis functions provided by the
wavelet packet transformation. The use of such a library has
the potential of enhancing the extraction of patterns from
abnormal events, making the method more sensitive to a
wider class of faults, with arbitrary localization and develop-
ing at distinct locations in the time-frequency plane. Our

method also presents the desirable feature of autonomously
selecting the adequate decomposition depth to represent each
significant pattern, a property not shared by wavelet-based
MSSPC approaches.

ARL results, derived from Monte Carlo simulations with
simple fault patterns (step, sinusoidal increase and decrease
in autocorrelation), demonstrate the adaptive ability of
MSSPC methods over different shift magnitudes. Despite the
fact that WP-MSSPC does not constitute the best approach
for some simple perturbations (e.g., step perturbation), it is
still able to keep a well balanced performance, without pre-
senting any significant degradation of its relative perform-
ance regarding all other tested methods, at any particular
range of scales, as happens with single-scale approaches,
once they move away from their optimal operation regions.
However, one should also notice that, as simple perturbations
are concerned, MSSPC methods were found to perform better
in detecting an hidden sinusoidal perturbation, and were the
only ones able to detect a decrease in autocorrelation for an
AR(1) process.

The analysis of real world case studies underlines the true
potential of MSSPC approaches and illustrates the added
value that WP-MSSPC can bring to process monitoring,
given its increased flexibility to cope with the more complex
shapes that real process disturbances usually tend to present.
Thus, WP-MSSPC seems to be the most appropriate method
for performing SPC on processes where the nature of the
data patterns due to abnormal situations is not known before-
hand. This is likely to be the case for most complex proc-
esses and practical applications.

Future work can focus on exploring other types of wavelet
filters for the wavelet packet decompositions, with the aim of
improving detection capabilities. The application of this
methodology to other types of processes, namely batch proc-
esses, is also envisioned as an interesting area for additional
research activities to be carried out.
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