Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/114147
Title: Development of an innovative flexible paper-based methanol fuel cell (PB-DMFC) sensing platform – Application to sarcosine detection
Authors: Carneiro, Liliana P.T.
Pinto, Alexandra M.F.R.
Sales, M. Goreti F. 
Keywords: Paper-based methanol fuel cell; Sensing platform; Molecularly imprinted polymer; Sarcosine; Point of care; Cancer biomarker
Issue Date: 2023
Publisher: Elsevier
Project: The authors acknowledge the financial support of EU-Horizon 2020 (Symbiotic, FET-Open, GA665046) and LPTC (Grant references: SFRH/ BD/122954/2016; COVID/BD/151738/2021) acknowledges Fundaç˜ao para a Ciˆencia e Tecnologia (FCT) for financial support. This work was also financially supported by LA/P/0045/2020 (ALiCE), UIDB/00532/ 2020 and UIDP/00532/2020 (CEFT), funded by national funds through FCT/MCTES (PIDDAC) 
Serial title, monograph or event: Chemical Engineering Journal
Volume: 452
Abstract: This work describes for the first time a paper-based direct methanol fuel cell platform (PB-DMFC) that functions as an energy source and biosensor, assembled on a simple paper substrate for point-of-care (POC) applications, targeting sarcosine as proof-of-concept. Specifically, a methanol fuel cell strip was developed from a square of Whatman paper, acting as substrate. The paper strip was treated with an impermeable agent (paraffin solution) and supported all fuel cell device components, including the electrolyte (Nafion®), anode electrode (carbon black Pt/Ru), cathode electrode (carbon black Pt), and current collectors (silver edges). All the described components formed a flexible single layer that operated in a completely passive mode by adding few microliters of a methanol solution on the anode side and by using atmospheric oxygen on the cathode side. The obtained platform had a stable electrical signal with an average OCV value of 0.45–0.55 V and a maximum power density of 20–50 μW/cm2, depending on the methanol concentration used (0.5 M–2 M). A sensing layer was built in situ on the anode electrode by electropolymerization of a solution of 3,4-ethylenedioxythiophene (EDOT) and pyrrole (Py) as monomers. The obtained PB-DMFC/biosensor was calibrated at room temperature in buffer and healthy human urine and showed linear responses from 1.0 × 10􀀀 7 to 1.0 × 10􀀀 3 M with a detection limit of 6.6 × 10􀀀 8 M. Selectivity studies evidenced signals changing within 1–10%, both in positive and negative directions. Results evidenced good reproducibility. Overall, the obtained results demonstrate a self-sufficient biosensor for the detection of sarcosine consisting of an innovative paper-based methanol fuel cell strip. This concept can open new horizons for massification of biosensors even in places with energy shortage.
URI: https://hdl.handle.net/10316/114147
ISSN: 13858947
DOI: 10.1016/j.cej.2022.139563
Rights: openAccess
Appears in Collections:FCTUC Eng.Química - Artigos em Revistas Internacionais

Show full item record

Page view(s)

18
checked on Apr 24, 2024

Download(s)

9
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons