Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/108366
Title: SpotOn: High Accuracy Identification of Protein-Protein Interface Hot-Spots
Authors: Moreira, Irina S. 
Koukos, Panagiotis I. 
Melo, Rita 
Almeida, José G. 
Preto, Antonio J. 
Schaarschmidt, Joerg
Trellet, Mikael
Gümüş, Zeynep H
Costa, Joaquim 
Bonvin, Alexandre M. J. J. 
Issue Date: 14-Aug-2017
Project: IF/00578/2014 
SFRH/BPD/97650/2013 
CENTRO-01-0145-FEDER-000008: BrainHealth 2020 
Volume: 7
Issue: 1
Abstract: We present SpotOn, a web server to identify and classify interfacial residues as Hot-Spots (HS) and Null-Spots (NS). SpotON implements a robust algorithm with a demonstrated accuracy of 0.95 and sensitivity of 0.98 on an independent test set. The predictor was developed using an ensemble machine learning approach with up-sampling of the minor class. It was trained on 53 complexes using various features, based on both protein 3D structure and sequence. The SpotOn web interface is freely available at: http://milou.science.uu.nl/services/SPOTON/ .
URI: https://hdl.handle.net/10316/108366
ISSN: 2045-2322
DOI: 10.1038/s41598-017-08321-2
Rights: openAccess
Appears in Collections:I&D CNC - Artigos em Revistas Internacionais

Show full item record

Page view(s)

92
checked on Sep 11, 2024

Download(s)

41
checked on Sep 11, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons