Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/107629
Título: A Novel Biomarker of Compensatory Recruitment of Face Emotional Imagery Networks in Autism Spectrum Disorder
Autor: Simões, Marco 
Monteiro, Raquel 
Andrade, João 
Mouga, Susana 
França, Felipe
Oliveira, Guiomar 
Carvalho, Paulo 
Castelo-Branco, Miguel 
Palavras-chave: emotional facial expression; mental imagery; EEG biomarker; machine learning; autism spectrum disorder; dynamic expressions
Data: 2018
Editora: Frontiers Media S.A.
Projeto: info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID/NEU/04539/2013/PT 
SAICTPAC/0010/2015 
CENTRO-01-0145-FEDER-000016/BIGDATIMAGE 
POCI-01-0145- FEDER-30852 
SFRH/BD/77044/2011 
SFRH/BD/102779/2014 
Título da revista, periódico, livro ou evento: Frontiers in Neuroscience
Volume: 12
Número: NOV
Resumo: Imagery of facial expressions in Autism Spectrum Disorder (ASD) is likely impaired but has been very difficult to capture at a neurophysiological level. We developed an approach that allowed to directly link observation of emotional expressions and imagery in ASD, and to derive biomarkers that are able to classify abnormal imagery in ASD. To provide a handle between perception and action imagery cycles it is important to use visual stimuli exploring the dynamical nature of emotion representation. We conducted a case-control study providing a link between both visualization and mental imagery of dynamic facial expressions and investigated source responses to pure face-expression contrasts. We were able to replicate the same highly group discriminative neural signatures during action observation (dynamical face expressions) and imagery, in the precuneus. Larger activation in regions involved in imagery for the ASD group suggests that this effect is compensatory. We conducted a machine learning procedure to automatically identify these group differences, based on the EEG activity during mental imagery of facial expressions. We compared two classifiers and achieved an accuracy of 81% using 15 features (both linear and non-linear) of the signal from theta, high-beta and gamma bands extracted from right-parietal locations (matching the precuneus region), further confirming the findings regarding standard statistical analysis. This robust classification of signals resulting from imagery of dynamical expressions in ASD is surprising because it far and significantly exceeds the good classification already achieved with observation of neutral face expressions (74%). This novel neural correlate of emotional imagery in autism could potentially serve as a clinical interventional target for studies designed to improve facial expression recognition, or at least as an intervention biomarker.
URI: https://hdl.handle.net/10316/107629
ISSN: 1662-4548
DOI: 10.3389/fnins.2018.00791
Direitos: openAccess
Aparece nas coleções:I&D CISUC - Artigos em Revistas Internacionais
FMUC Medicina - Artigos em Revistas Internacionais
I&D CIBIT - Artigos em Revistas Internacionais
I&D ICNAS - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Citações SCOPUSTM   

22
Visto em 28/out/2024

Citações WEB OF SCIENCETM

19
Visto em 2/nov/2024

Visualizações de página

129
Visto em 5/nov/2024

Downloads

45
Visto em 5/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons