Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/106110
Title: | Fluoxetine Arrests Growth of the Model Diatom Phaeodactylum tricornutum by Increasing Oxidative Stress and Altering Energetic and Lipid Metabolism | Authors: | Feijão, Eduardo Cruz de Carvalho, Ricardo Duarte, Irina A. Matos, Ana Rita Cabrita, Maria Teresa Novais, Sara C. Lemos, Marco F. L. Caçador, Isabel Marques, João Carlos Reis-Santos, Patrick Fonseca, Vanessa F. Duarte, Bernardo |
Keywords: | pharmaceuticals; antidepressant; microalgae; ecotoxicity; photobiology; cell energy; biomarkers; fatty acid profile | Issue Date: | 2020 | Publisher: | Frontiers Media S.A. | Project: | PTDC/MAR-EST/3048/2014 (BIOPHARMA) PTDC/CTA-AMB/30056/2017 (OPTOX) UIDB/04292/2020 UID/MULTI/04046/2013 Integrated Programme of SR&TD SmartBioR (reference Centro-01-0145-FEDER-000018) SFRH/BPD/95784/2013 SFRH/BD/138376/2018 FCT and IGOT (contract under the DL 57/2016 and L57/2017 Program) |
metadata.degois.publication.title: | Frontiers in Microbiology | metadata.degois.publication.volume: | 11 | Abstract: | Pharmaceutical residues impose a new and emerging threat to aquatic environments and its biota. One of the most commonly prescribed pharmaceuticals is the antidepressant fluoxetine, a selective serotonin re-uptake inhibitor that has been frequently detected, in concentrations up to 40 μg L-1, in aquatic ecosystems. The present study aims to investigate the ecotoxicity of fluoxetine at environmentally relevant concentrations (0.3, 0.6, 20, 40, and 80 μg L-1) on cell energy and lipid metabolism, as well as oxidative stress biomarkers in the model diatom Phaeodactylum tricornutum. Exposure to higher concentrations of fluoxetine negatively affected cell density and photosynthesis through a decrease in the active PSII reaction centers. Stress response mechanisms, like β-carotene (β-car) production and antioxidant enzymes [superoxide dismutase (SOD) and ascorbate peroxidase (APX)] up-regulation were triggered, likely as a positive feedback mechanism toward formation of fluoxetine-induced reactive oxygen species. Lipid peroxidation products increased greatly at the highest fluoxetine concentration whereas no variation in the relative amounts of long chain polyunsaturated fatty acids (LC-PUFAs) was observed. However, monogalactosyldiacylglycerol-characteristic fatty acids such as C16:2 and C16:3 increased, suggesting an interaction between light harvesting pigments, lipid environment, and photosynthesis stabilization. Using a canonical multivariate analysis, it was possible to evaluate the efficiency of the application of bio-optical and biochemical techniques as potential fluoxetine exposure biomarkers in P. tricornutum. An overall classification efficiency to the different levels of fluoxetine exposure of 61.1 and 88.9% were obtained for bio-optical and fatty acids profiles, respectively, with different resolution degrees highlighting these parameters as potential efficient biomarkers. Additionally, the negative impact of this pharmaceutical molecule on the primary productivity is also evident alongside with an increase in respiratory oxygen consumption. From the ecological point of view, reduction in diatom biomass due to continued exposure to fluoxetine may severely impact estuarine and coastal trophic webs, by both a reduction in oxygen primary productivity and reduced availability of key fatty acids to the dependent heterotrophic upper levels. | URI: | https://hdl.handle.net/10316/106110 | ISSN: | 1664-302X | DOI: | 10.3389/fmicb.2020.01803 | Rights: | openAccess |
Appears in Collections: | I&D MARE - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Fluoxetine Arrests Growth of the Model Diatom Phaeodactylum tricornutum by Increasing Oxidative Stress and Altering Energetic and Lipid Metabolism.pdf | 5.17 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
39
checked on Nov 4, 2024
WEB OF SCIENCETM
Citations
36
checked on Nov 2, 2024
Page view(s)
87
checked on Nov 5, 2024
Download(s)
38
checked on Nov 5, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License