Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/105797
Título: Exploring Geometric Feature Hyper-Space in Data to Learn Representations of Abstract Concepts
Autor: Sharma, Rahul 
Ribeiro, Bernardete 
Miguel Pinto, Alexandre
Cardoso, F. Amílcar 
Palavras-chave: unsupervised machine learning; hierarchical learning; computational representation; computational cognitive modeling; contextual modeling; classification; IoT data modeling
Data: 2020
Editora: MDPI
Título da revista, periódico, livro ou evento: Applied Sciences (Switzerland)
Volume: 10
Número: 6
Resumo: The term concept has been a prominent part of investigations in psychology and neurobiology where, mostly, it is mathematically or theoretically represented. Concepts are also studied in the computational domain through their symbolic, distributed and hybrid representations. The majority of these approaches focused on addressing concrete concepts notion, but the view of the abstract concept is rarely explored. Moreover, most computational approaches have a predefined structure or configurations. The proposed method, Regulated Activation Network (RAN), has an evolving topology and learns representations of abstract concepts by exploiting the geometrical view of concepts, without supervision. In the article, first, a Toy-data problem was used to demonstrate the RANs modeling. Secondly, we demonstrate the liberty of concept identifier choice in RANs modeling and deep hierarchy generation using the IRIS dataset. Thirdly, data from the IoT’s human activity recognition problem is used to show automatic identification of alike classes as abstract concepts. The evaluation of RAN with eight UCI benchmarks and the comparisons with fiveMachine Learning models establishes the RANs credibility as a classifier. The classification operation also proved the RANs hypothesis of abstract concept representation. The experiments demonstrate the RANs ability to simulate psychological processes (like concept creation and learning) and carry out effective classification irrespective of training data size.
URI: https://hdl.handle.net/10316/105797
ISSN: 2076-3417
DOI: 10.3390/app10061994
Direitos: openAccess
Aparece nas coleções:FCTUC Eng.Informática - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Citações SCOPUSTM   

4
Visto em 29/abr/2024

Citações WEB OF SCIENCETM

3
Visto em 2/mai/2024

Visualizações de página

36
Visto em 7/mai/2024

Downloads

26
Visto em 7/mai/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons