Please use this identifier to cite or link to this item:
Title: Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
Authors: Silva, Marcionilo 
Ramos, Ana S. 
Simões, Sónia
Keywords: diffusion bonding; thin film; titanium; Al2O3; sputtering
Issue Date: 2021
Publisher: MDPI
Project: PTDC/CTM-CTM/31579/2017—POCI- 01-0145-FEDER-031579 
Serial title, monograph or event: Metals
Volume: 11
Issue: 11
Abstract: This work aims to investigate the joining of Ti6Al4V alloy to alumina by diffusion bonding using titanium interlayers: thin films (1 m) and commercial titanium foils (5 m). The Ti thin films were deposited by magnetron sputtering onto alumina. The joints were processed at 900, 950, and 1000 C, dwell time of 10 and 60 min, under contact pressure. Experiments without interlayer were performed for comparison purposes. Microstructural characterization of the interfaces was conducted by optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). The mechanical characterization of the joints was performed by nanoindentation to obtain hardness and reduced Young’s modulus distribution maps and shear strength tests. Joints processed without interlayer have only been achieved at 1000 C. Conversely, joints processed using Ti thin films as interlayer showed promising results at temperatures of 950 C for 60 min and 1000 C for 10 and 60 min, under low pressure. The Ti adhesion to the alumina is a critical aspect of the diffusion bonding process and the joints produced with Ti freestanding foils were unsuccessful. The nanoindentation results revealed that the interfaces show hardness and reduced Young modulus, which reflect the observed microstructure. The average shear strength values are similar for all joints tested (52 14 MPa for the joint processed without interlayer and 49 25 MPa for the joint processed with interlayer), which confirms that the use of the Ti thin film improves the diffusion bonding of the Ti6Al4V alloy to alumina, enabling a decrease in the joining temperature and time.
ISSN: 2075-4701
DOI: 10.3390/met11111728
Rights: openAccess
Appears in Collections:I&D CEMMPRE - Artigos em Revistas Internacionais

Files in This Item:
Show full item record


checked on Feb 19, 2024


checked on May 2, 2023

Page view(s)

checked on Feb 27, 2024


checked on Feb 27, 2024

Google ScholarTM




This item is licensed under a Creative Commons License Creative Commons