Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/97071
DC FieldValueLanguage
dc.contributor.authorCorreia, Alexandre C. M.-
dc.date.accessioned2022-01-12T12:12:03Z-
dc.date.available2022-01-12T12:12:03Z-
dc.date.issued2020-12-04-
dc.identifier.issn0004-6361-
dc.identifier.issn1432-0746-
dc.identifier.urihttps://hdl.handle.net/10316/97071-
dc.description14 pages, 10 figurespt
dc.description.abstractA giant collision is believed to be at the origin of the Pluto–Charon system. As a result, the initial orbit and spins after impact may have substantially differed from those observed today. More precisely, the distance at periapse may have been shorter, subsequently expanding to its current separation by tides raised simultaneously on the two bodies. Here we provide a general 3D model to study the tidal evolution of a binary composed of two triaxial bodies orbiting a central star. We apply this model to the Pluto–Charon binary, and notice some interesting constraints on the initial system. We observe that when the eccentricity evolves to high values, the presence of the Sun prevents Charon from escaping because of Lidov-Kozai cycles. However, for a high initial obliquity for Pluto or a spin-orbit capture of Charon’s rotation, the binary eccentricity is damped very efficiently. As a result, the system can maintain a moderate eccentricity throughout its evolution, even for strong tidal dissipation on Pluto.pt
dc.language.isoengpt
dc.relationUIDB/04564/2020pt
dc.relationUIDP/04564/2020pt
dc.relationPOCI-01-0145-FEDER-029932/PHOBOSpt
dc.relationPOCI-01- 0145-FEDER-022217/ENGAGE SKApt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectPlanets and satellitespt
dc.subjectDynamical evolution and stabilitypt
dc.subjectMinor planetspt
dc.subjectAsteroidspt
dc.subjectPlutopt
dc.subjectCharonpt
dc.titleTidal evolution of the Pluto-Charon binarypt
dc.typearticlept
degois.publication.firstPageA94pt
degois.publication.titleAstronomy & Astrophysicspt
dc.relation.publisherversionhttps://www.aanda.org/articles/aa/abs/2020/12/aa38858-20/aa38858-20.htmlpt
dc.peerreviewedyespt
dc.identifier.doihttp://arxiv.org/abs/2012.02576v1-
dc.identifier.doihttp://arxiv.org/abs/2012.02576v1-
dc.identifier.doihttp://arxiv.org/abs/2012.02576v1-
dc.identifier.doi10.1051/0004-6361/202038858-
degois.publication.volume644pt
dc.date.embargo2020-12-04*
dc.identifier.urlhttp://arxiv.org/abs/2012.02576v1-
uc.date.periodoEmbargo0pt
item.fulltextCom Texto completo-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.author.deptFaculty of Sciences and Technology-
crisitem.author.parentdeptUniversity of Coimbra-
crisitem.author.orcid0000-0002-8946-8579-
crisitem.project.grantnoCenter for Physics of the University of Coimbra-
crisitem.project.grantnoCenter for Physics of the University of Coimbra-
Appears in Collections:I&D CFis - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
aa38858-20.pdf2.99 MBAdobe PDFView/Open
Show simple item record

Page view(s)

100
checked on Jul 23, 2024

Download(s)

65
checked on Jul 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons