Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/92032
Título: Bandwidth selection for kernel density estimation: a Hermite series-based direct plug-in approach
Autor: Tenreiro, Carlos 
Data: 2020
Editora: Taylor and Francis
Título da revista, periódico, livro ou evento: Journal of Statistical Computation and Simulation
Volume: 90
Número: 18
Resumo: In this paper we propose a new class of Hermite series-based direct plug-in bandwidth selectors for kernel density estimation and we describe their asymptotic and finite sample behaviours. Unlike the direct plug-in bandwidth selectors considered in the literature, the proposed methodology does not involve multistage strategies and reference distributions are no longer needed. The new bandwidth selectors show a good finite sample performance when the underlying probability density function presents not only "easy-to-estimate" but also "hard-to-estimate" distribution features. This quality, that is not shared by other widely used bandwidth selectors as the classical plug-in or the least-square cross-validation methods, is the most significant aspect of the Hermite series-based direct plug-in approach to bandwidth selection.
URI: https://hdl.handle.net/10316/92032
ISSN: 0094-9655
1563-5163
DOI: 10.1080/00949655.2020.1804571
Direitos: embargoedAccess
Aparece nas coleções:I&D CMUC - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
hspi-author's version.pdf360.73 kBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Google ScholarTM

Verificar

Altmetric

Altmetric


Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.