Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/5221
Title: Maximum likelihood estimation with nonlinear regression in polarographic and potentiometric studies
Authors: Pereira, J. L. G. C. 
Pais, A. A. C. C. 
Redinha, J. S. 
Keywords: Maximum likelihood; Nonlinear regression; Polarographic studies
Issue Date: 2001
Citation: Analytica Chimica Acta. 433:1 (2001) 135-143
Abstract: In this work we review some aspects of maximum likelihood nonlinear modeling in polarographic and potentiometric techniques. Different algorithms, namely the Levenberg-Marquardt and the "error-in-variables" methods in parametric and Monte-Carlo nonparametric estimation are used. Conclusions are drawn upon the influence of experimental errors and error correlation, introduced via statistical weighting, in the accuracy and precision of the estimated parameters. Several of the tested alternatives, including regression on the signal variable alone with a global error weighting function, are shown to provide adequate representation of the experimental data.
URI: http://hdl.handle.net/10316/5221
Rights: openAccess
Appears in Collections:FCTUC Química - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
filee2f7c79ab0af4dba826a8e98e7fa4542.pdf113.78 kBAdobe PDFView/Open
Show full item record

Page view(s)

234
checked on Apr 1, 2020

Download(s)

71
checked on Apr 1, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.