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Abstract

In this work we review some aspects of maximum likelihood nonlinear modeling in polarographic and potentiometric
techniques. Different algorithms, namely the Levenberg–Marquardt and the “error-in-variables” methods in parametric and
Monte-Carlo nonparametric estimation are used. Conclusions are drawn upon the influence of experimental errors and error
correlation, introduced via statistical weighting, in the accuracy and precision of the estimated parameters. Several of the
tested alternatives, including regression on the signal variable alone with a global error weighting function, are shown to
provide adequate representation of the experimental data. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The use of combined polarographic and poten-
tiometric methods provides a powerful means to
characterize complexometric systems and obtain data
allowing for the determination of conditional forma-
tion constants [1]. This ultimate goal can only be
achieved through a careful analysis of the successive
steps in the estimation process so that accurate
parameter values and respective uncertainties may be
obtained.

The critical tasks on parameter estimation are
related to model selection, and experimental error
analysis [2,3]. These must follow optimally designed
experimental procedures with data treatment in view.
This work concerns experimental error analysis and

∗ Corresponding author. Tel.:+351-239-852080;
fax: +351-239-827703.
E-mail address:pais@qui.uc.pt (A.A.C.C. Pais).

problems related to statistical weighting of data and
their effect on parameter estimation.

Obtaining experimental data suitable for a a posteri-
ori error analysis is time consuming, especially when
there is the need for “blank runs” to access experi-
mental uncertainty. This assessment may also pose
various problems when experiments are unique, e.g.
in destructive essays, and/or simultaneous determina-
tion of errors in all variables is not possible due to
instrumental interference.

Considering stable experimental conditions and
reproducible instrumental response the above difficul-
ties can be circumvented using a functional represen-
tation of the experimental error. This expression can
then be employed in the statistical weighting of data
obtained under similar conditions.

In the present work we discuss strategies to perform
the above task and suggest alternatives to improve
data modeling and parameter estimation. The struc-
ture of this article is as follows. Section 2 reviews
the maximum likelihood formalism and discusses
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the influence of experimental error in parameter es-
timation, Section 3 describes the polarographic and
potentiometric models used in case studies and the
Monte-Carlo procedures for error simulation, Section
4 presents the most relevant results and Section 5
gathers some conclusions.

2. Maximum likelihood estimation

Polarographic and potentiometric curves may both
be addressed as bivariate systems in which a pertur-
bation is imposed, corresponding to the independent
variable with valuexi , meanµxi

and random error
εxi

, while the response is recorded as the dependent
variable with valueyi , meanµyi

and random errorεyi
.

In what follows we will assume that no significant
systematic errors are present in the variables, be-
ing the main contribution to data dispersion additive
random heterocedastic normal errors in the signal
variable. This implies error free or, more loosely,
abscissae affected by small homocedastic errors. We
will also assume that a suitable and parsimonious
model (η(xi, θj )) with p nonrandom parametersθj

for then data points (xi, yi) is available.
The deviation of the model in each data point is

then given by

ei = yi − ηi, ∀i ∈ {1, . . . , n} (1)

whereηi is the value predicted from the model for the
dependent variable valueyi .

For a correct model no bias should occur which
leads to the equality of the expected values for the
model and experimental errors,

E(ei) = E(εyi
) (2)

In these conditions, each data ordinate follows a
conditional normal distribution [2],

f (yi |xi) = 1√
2πσ 2

yi
(1 − ρ2

[xiyi ]
)

× exp


−

(
zyi

− ρ[xiyi ]zxi

)2
2
(
1 − ρ2

[xiyi ]

)

 (3)

where

zxi
= xi − µxi

σxi

and

zyi
= yi − µyi

σyi

are the normalized random errors in the independent
and dependent variables, respectively, andρ[xiyi ] is the
experimental correlation between these variables. We
note the conditional probability distribution function
in Eq. (3) is used essentially to emphasize the existence
of random error correlation between the independent
and dependent variables.

Assuming that the normal error present in the inde-
pendent variable propagates via the physically-based
model to the corresponding predicted value (ηi), the
model error of Eq. (1) is thus also characterized by a
conditional normal distribution,

f (ei |xi) = f (yi − ηi |xi) = 1√
2πσ 2

ei

(
1 − ρ2

[xiei ]

)

× exp


− (zei

− ρ[xiei ]zxi
)2

2
(
1 − ρ2

[xi ei ]

)

 (4)

where

zei
= yi − ηi

σei

is the normalized error of the model andρ[xiei ] is the
correlation between the independent variable and the
model propagated error for the dependent variable.

When the errors in the independent variable are not
significant in comparison to those present in the depen-
dent variable,1 ρ[xiei ]zxi

� zei
, Eq. (4) simplifies to

f (ei |xi) = 1√
2πσ 2

ei

exp

(
−z2

ei

2

)
(5)

We note that for favorable situations in least-squares
modeling, the distribution given by Eq. (5) is fol-
lowed at all data points. If errors are uncorrelated for

1 This situation is not infrequent when data are collected with
adequate experimental/instrumental conditions.
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different data points, the total conditional probability
is given by the likelihood function (L(θ)) [2],

L(θ) =
n∏

i=1

f (ei |xi) (6)

Best estimates of parameter vectorθ can be found by
maximizing the log-likelihood function (l(θ)),

l(θ) = −n

2
ln(2π) − ln

[
n∑

i=1

σei

]

−1

2

n∑
i=1

[
(yi − ηi)

2

σ 2
ei

]
(7)

which corresponds to minimize the weighted sum of
squares term,

SSqr=
n∑

i=1

[
(yi − ηi)

2

σ 2
ei

]
(8)

However, variance can be obtained by general error
propagation formulas,

σ 2
ei

= σ 2
yi

+
(

∂ηi

∂xi

)2

σ 2
xi

− 2

(
∂ηi

∂xi

)
σyi

σxi
ρ[xiyi ] (9)

leading to an alternate form of Eq. (8).

SSqr=
n∑

i=1

[
(yi − ηi)

2

a + bδ2
i + cδi

]
(10)

whereδi (=∂ηi/∂xi) is the first derivative of the model
and the coefficients are related with pure instrumental
error (a ≈ σ 2

yi
, b ≈ σ 2

xi
) and error correlation (c =

−2σxi
σyi

ρ[xiyi ] ).
We note that the error propagation expression,

Eq. (9), is more appropriate for linear models. Also,
the correlation of variable errors is often neglected,
or unitary correlation assumed [4].

The uncertainty in each observed data point ordi-
nate can alternatively be ascribed to the sum of two
independent terms, one related to the actual intrinsi-
cal instrumental random error and the other to error
propagation from the independent variable. The latter
is, in this approach, the sole responsible for error cor-
relation between variables and for the systems studied
here, the former can be viewed as approximately con-

stant. The expression for regression weights may thus
be rewritten simply as [5]

1

wi

= σ 2
yi

= σ̂ 2
y +

(
∂η

∂xi

)2

σ̂ 2
x (11)

The parameterŝσy and σ̂x in the above equation can
be determined by least-squares, if a sufficient num-
ber of blank runs have been conducted. Although
σ̂x should correspond, for the systems under study,
to the approximately homocedastic dispersion in the
independent variable, for practical applications a sig-
nificant deviation from this average dispersion may
be found. One of the reasons is that the random fluc-
tuation in y is usually dominant, and only for high
absolute values of the first derivative does the ordinate
dispersion deviate from the intrinsical constant value.

The need for a first derivative of the model in
Eq. (11) can be accommodated by standard tech-
niques, e.g. Savitzky–Golay derivatives [6] or itera-
tively updated model derivatives [7].

In cases where both variables have significant
uncertainties, the likelihood function is frequently [8]
written as

L(θ) =
n∏

i=1

1√
2πσxi

exp

(
−z2

xi

2

)

×
n∏

i=1

1√
2πσyi

exp

(
−z2

yi

2

)
(12)

which would lead to an expression similar to Eq. (7)
but that is often used without considering correlation
between the errors in the dependent and independent
variables (as in Eq. (9)). This suggests that the uncer-
tainty in x is not physically propagated toy. The use
of Eq. (12) implies [8]

SSqr=
n∑

i=1

(
yi − η(xi; θ)

di

)2

(13)

where

di = 1

wi

= σ 2
yi

+
(

∂η

∂xi

)2

σ 2
xi

(14)

Minimization of SSqr with the above weights corre-
sponds to the “effective variance method”, in which
errors in both variables are treated by ordinary
(weighted) least-squares. We stress that the above
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expression is not equivalent to Eq. (11) once the to-
tal signal varianceσyi

in Eq. (14) differs from the
intrinsical counterpart̂σyi

.
Our purpose in what follows will be to assess the

best procedure to determine parameter values and
dispersion from experimental data. The tested pro-
cedures will include different weighting and fitting
algorithms as well as alternatives in the synthetic
data generation for nonparametric validation of the
least-squares approaches.

3. Procedure

3.1. Modeling

The polarographic signal of a differential pulse
experiment with small amplitude steps [9] can be
modeled by

i = 4θ1

[
exp((E − θ2)/θ3)

[1 + exp((E − θ2)/θ3)]2

]
+ θ4+ θ5E (15)

whereθ1 and θ2 are the most relevant polarographic
parameters, related to peak current (ip) and peak
potential (Ep), respectively,θ3 is related to the re-
dox reversibility coefficient (α = RT/neFθ3) andne
is the number of electrons involved. The remaining
parameters (θ4 andθ5) are introduced to account for
background current and are indispensable for obtain-
ing accurate and precise estimates of the relevant
parameters [5].

The potential in a potentiometric titration curve of
a diluted strong acid (HX) with a strong base (MOH)
in the presence of an interfering ion (M+) can be
described by the Nicholsky equation [10],

EH+ = θ1 + θ2 log[[H+] + θ3[M+]] (16)

where [M+] represents the total interfering ion con-
centration and [H+] the hydrogen ion concentration,

Table 1
Parameter values used for Monte-Carlo simulation in potentiometric (upper line) and polarographic (bottom line) cases

θ1 θ2 θ3 θ4 θ5 σ̂x σ̂y

419.832 mV 58.5704 mV per decade 3.46209×10−12 M−1 1.90541×10−14 M2 0.416081 m 0.000553 ml 0.58170 mV
0.325977mA −0.393654 V 1.35462×10−2 V −6.66148×10−3 mA −2.13259×10−2 mA V−1 0.000479 V 0.00126mA

[H+] = 1
2

(
φ +

√
φ2 + 4θ4

)
(17)

with

φ = CB(θ5 − vB)

V
(18)

In the above,CB stands for strong base analytical
concentration,vB for the respective added volume and
V for the total volume of solution contained in the
titration vessel.

Parameters consist in the conditional galvanic cell
potential constant (θ1), the response sensitivity (θ2),
the conditional potentiometric selectivity constant for
the interfering ion (θ3), the conditional ionic product
of water (θ4) and the equivalent volume (θ5).

The parameter values used in the simulation of data
curves and data dispersion, Eq. (11), are summarized
in Table 1. The way in which they were obtained will
be discussed in the next subsections.

3.2. Data acquisition

To assess the influence of experimental errors in pa-
rameter and parameter dispersion estimation we have
carried out a simulation based on actual experimental
data curves. These correspond to 16 potentiometric
titration curves, with ca. 200 points for each curve,
and simultaneous determination of potential and vol-
ume of added base for each point. In the case of the
polarographic curves we used 19 blank runs for es-
tablishing the signal (current intensity values) while
the imposed potential, abscissae, was independently
determined through 10 replicates of the 125 potential
values scanned for each run, with each value measured
with a high precision micromultimeter. We note that
the blank runs were obtained from a lead perchlorate
electrolyte solution and thus differ from the general
situation in which the ligand molecule or ion is also
present. Experimental standard error deviations in
the dependent variables (σyi

) were obtained directly
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from the above data. In the case of the independent
variable in the polarographic experiments, dispersion
was assessed on the basis of several micromultimeter
readings of the applied potential values. The volume
precision for the microburette was calculated from
mass determination and density values corresponding
to the experimental conditions, using adequately pu-
rified water. Potentiometric titrations of strong acid
(HClO4) with strong base (NaOH) were conducted
with a 665 DOSIMATE (Metrohm), with minimum
volume increments of 0.001 ml, recorded with a pHM
95 (Radiometer) potentiometer (±0.1 mV) in a ther-
mostatized vessel and in the presence of an inert
atmosphere.

The polarographic determinations were carried out
in a 693 VA Processor/694 VA Stand (Metrohm) po-
larograph using a 50mM Pb2+ solution with 0.2 M
NaClO4, slightly acidified. The imposed potential in
the polarographic determinations was measured with
a 195A Keithley digital multimeter (±10mV).

3.3. Simulation

In this work we have generated synthetic data
points to mimic experimental data. When the latter
correspond to a set of calibration curves, the disper-
sion of the independent and signal variables may be
assessed and expressed through an appropriate error
structure to be used in similar experimental condi-
tions when it is hard to get replicates. It is therefore
of paramount importance to test the accuracy and
precision of parameters recovered from a single data
curve, with characterized dispersion in each point.
In laboratory-based work, the data curve is replaced
by experimental results, and the available dispersion
comes from the error function determined in a corre-
sponding calibration procedure [5]. Thus, parameters
pertaining to Eq. (11) were determined on the basis of
a linear unweighted least-squares to standard errors
of experimental results.

The Monte-Carlo simulation we have used is based
on experimental data that is previously subject to a
fitting procedure (see Figs. 1 and 2). This procedure is
intended to be completely dissociated from the subse-
quent tests, that comprise alternatives for the genera-
tion of synthetic data, weighting, and fitting algorithm.
The parameters in Eqs. (15) and (16), describing
the potentiometric titration and polarographic curves,

Fig. 1. Experimental differential pulse calibration points (19 repli-
cates with average potential values) and model values (line), ob-
tained with the Levenberg–Marquardt algorithm.

respectively, were obtained as follows: for each case,
all available data (comprising the whole set of repli-
cates) was fitted as only one data set, with equal
weights. In the case of the polarographic data, average
potential values were used as value of the independent
variable in each point. This procedure yields param-
eter values for subsequent use in the simulation and
the relative weight of each point is implicitly intro-
duced through the experimental dispersion. Both the
Levenberg–Marquardt [11] and “error-in-variables”
[12] fitting algorithms were used. The first algorithm
is directed to nonlinear least-squares and assumes that
dispersion is located only in the dependent variable
of the function subject to modeling. In contrast, the
latter encompasses dispersion in both variables and
may thus be used in nonlinear problems in which ran-
dom errors present in the independent variable cannot
be neglected. For simplicity, the values presented in
Table 1 are the arithmetic mean of the results of these
two algorithms.

Each Monte-Carlo simulation corresponds to a set
of 2000 curves a number that is more than sufficient to
guarantee adequate convergence of the nonparametric
estimates. In the generation of these synthetic data
sets (xi ,yi), noncorrelated error was simulated using
independent normal random number generators,

R1 = µxi
+ N(0, σ 2

xi
) (19)

R2 = η(xi, θj ) + N(0, σ 2
yi

) (20)
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Fig. 2. Experimental potentiometric calibration points (16 acquisitions) and fitted values, using the Levenberg–Marquardt algorithm (line).
The insert above highlights the typical data dispersion.

In the possibility of correlated error, also tested, the
randomized value of the independent variable is used
to generate the randomized dependent value,

R2 = η(R1, θj ) + N(0, σ̂ 2
y ) (21)

Besides using Eq. (11) as weighting factor, other
functions were also tested for comparison. These cor-
respond to (i) constant, unitary, weight (wi = 1), (ii)
constant relative error (wi = 1/y2

i ), (iii) experimen-
tal yi variance (wi = 1/σ 2

yi
) and (iv) the effective

variance factor of Eq. (14).
We note that weights (i) and (ii) above do not allow

for direct consideration of experimental error prop-
agation to parameters, and will be essentially used
for accuracy assessment. Weight (iii) can only be ap-
plied in calibration procedures, and not in the actual
experimental determinations.

Nonlinear regression onyi is considered for all
the weighting factors. In the case of the “error-in-
variables” algorithm [12] only Eq. (11) and weight
(iii) are presented. This is because the “effective vari-
ance method” encompasses errors in both variables
in a ordinary (weighted) least-squares procedure.
Explicit regression on both variable is conducted in
this algorithm by minimizing the merit function

SSqr=
n∑

i=1

wx(xi − x̂i )
2 + wyi

(yi − η(x̂i))
2 (22)

where wx = 1/σ 2
x , corresponding directly to the

inverse of the approximately homocedastic variance
in the perturbation variable.

4. Results and discussion

The accuracy results for parameters recovered with
Monte-Carlo simulation are presented in Table 2 while
the corresponding precision values can be found in
Table 3.

Firstly, we compare the “error-in-variables” results
using Eq. (11) and the experimental variance for the
signal variable. Both in the potentiometric and polaro-
graphic cases it is patent that the accuracy resulting
from the use of both weighting methods is very simi-
lar. Also, it is obvious that thexycorrelated generation
of synthetic data, through Eq. (21), leads to better
estimates of the parameters. Thus, in the follow-
ing discussion we will concentrate on the correlated
approach.
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Table 2
Accuracy of parameters obtained by Monte-Carlo simulation, using the Levenberg–Marquardt and “error-in-variables” algorithmsa

Levenberg–Marquardt “Error-in-variables”

Eq. (14) 1/σ 2
yi

Eq. (11) 1/y2
i 1/σ̂ 2

y 1/σ 2
x , 1/σ 2

yi
Eq. (11)

θ1 −0.00028 −0.00028 −0.00028 −0.00027 −0.00028 −0.00034 −0.00034 Parametric estimate
−0.00131 −0.02244 −0.00122 −0.03573 −0.09118 −0.11462 −0.08537 MC/ind.

0.00803 −0.00056 −0.00015 0.00624 0.00736 −0.00022 −0.00112 MC/corr.

θ2 0.00005 0.00005 0.00005 0.00005 0.00005 −0.00012 −0.00012 Parametric estimate
−0.01055 −0.06674 −0.01368 −0.04612 −0.22423 −0.28595 −0.24421 MC/ind.

0.02098 0.01056 0.01077 0.02368 0.01838 −0.00757 −0.01369 MC/corr.

θ3 −0.00250 −0.00258 −0.00265 −0.00309 −0.00305 −0.01027 −0.01027 Parametric estimate
−0.58918 −0.76350 −0.46810 3.31031 −6.95310 −0.40441 −0.94313 MC/ind.
−0.47237 −0.33974 −0.27928 0.55336 0.32472 0.12952 0.12658 MC/corr.

θ4 0.22181 0.22181 0.22178 0.22198 0.22179 0.21899 0.21899 Parametric estimate
−0.07445 −0.92311 0.02257 −1.47437 −4.04343 −7.60489 −5.26055 MC/ind.

0.14648 0.04925 0.17469 0.75899 0.50796 0.21915 0.14149 MC/corr.

θ5 0.00002 0.00002 0.00002 0.00002 0.00002 −0.00002 −0.00002 Parametric estimate
0.00045 −0.01166 0.00024 0.01540 −0.00411 −0.08652 −0.05761 MC/ind.
0.00086 0.00053 0.00009 −0.00012 −0.00007 0.00032 0.00050 MC/corr.

θ1 −0.03742 −0.01093 −0.01003 0.02400 −0.00893 −0.01058 −0.01189 Parametric estimate
−0.04128 0.00137 −0.05780 13.49824 −0.05130 0.03772 −0.05780 MC/ind.
−0.01019 −0.01679 −0.01749 13.42446 −0.01216 −0.00734 −0.01817 MC/corr.

θ2 0.00211 −0.00184 −0.00189 0.33073 −0.01162 0.00702 0.00755 Parametric estimate
−0.00969 −0.00962 −0.00964 0.99439 −0.00967 −0.00911 −0.00939 MC/ind.

0.00047 0.00009 0.00042 1.00310 0.00072 0.00047 0.00047 MC/corr.

θ3 −0.17149 −0.12995 −0.00340 1.44666 0.60958 −0.18602 −0.12243 Parametric estimate
−0.00767 −0.05695 0.00216 0.46019 0.01605 0.02299 0.02041 MC/ind.

0.03943 0.02604 0.04201 −0.00192 0.04644 0.04201 0.03389 MC/corr.

a Values are expressed in percentage, relative to those in Table 1. Various weighting factors are used, as indicated on the top of each
value column. The upper part of the table corresponds to the potentiometric and the lower part to the polarographic data. Key — MC/ind.:
Monte-Carlo estimates with independent generation of syntheticx andy data, Eqs. (19) and (20); MC/corr.: Monte-Carlo estimates using
Eqs. (19) and (21).

The use of the simpler Levenberg–Marquardt in-
stead of the “error-in-variables” approach slightly
increases the accuracy of the results obtained from
the weighting function (11). We note, however, that
both are essentially equivalent and that the original
generating parameters were defined by the arithmetic
mean of results from those algorithms, obtained from
the complete set of experimental data. The effective
variance weighting leads to parameters not so accurate
as those stemming from Eq. (11) in the case of the
potentiometric titrations, although slightly increasing
the accuracy in the polarographic curves (for which
only average values in each abscissa were used in the
determination of the original, i.e. generating param-
eters of Table 1). The consideration of equal weights
in all points yields for the two systems considered an

accuracy similar to that obtained with the “effective
variance method” or Eq. (11). This conclusion does
not apply to weighting based on constant relative
error (wi = 1/y2

i ), that in some parameters presents
considerable deviations from the values of Table 1.
Probably, the accuracy obtained with constant weight-
ing is due to the fact that most experimental and, con-
sequently, simulated points are located in regions were
the first derivative of the model function has a small
value.

In what concerns the respective parameter disper-
sion, the situation is different. Constant weighting
predicts parameter dispersions very different from
every other estimate. This leads to the obvious re-
sult that even if this approach may be considered in
accuracy terms, it must be discarded on precision
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Table 3
Precision of parameters obtained by Monte-Carlo simulation, using the Levenberg–Marquardt and “error-in-variables” algorithmsa

Levenberg–Marquardt “Error-in-variables”

Eq. (14) 1/σ 2
yi

Eq. (11) 1/y2
i 1/σ̂ 2

y 1/σ 2
x , 1/σ 2

yi
Eq. (11)

θ1 (mV−1) 0.617 0.570 0.562 – 0.363 0.570 0.562 Parametric estimate
0.627 0.544 0.564 2.786 2.431 0.543 0.540 MC/ind.
0.608 0.558 0.561 0.384 0.368 0.562 0.549 MC/corr.

θ2 (decade mV−1) 0.232 0.212 0.209 – 0.127 0.212 0.209 Parametric estimate
0.235 0.224 0.232 1.042 0.926 0.210 0.227 MC/ind.
0.250 0.217 0.219 0.134 0.129 0.208 0.207 MC/corr.

θ3 × 1012 (M) 0.589 0.551 0.554 – 0.352 0.551 0.539 Parametric estimate
0.598 0.617 0.622 3.531 2.456 0.951 0.843 MC/ind.
0.533 0.546 0.549 0.358 0.338 0.526 0.528 MC/corr.

θ4 × 1015 (M−2) 1.317 1.201 1.180 – 0.710 1.156 1.090 Parametric estimate
1.339 1.369 1.371 5.991 4.913 3.389 2.548 MC/ind.
1.181 0.987 1.073 0.749 0.726 1.345 1.365 MC/corr.

θ5 × 103 (ml−1) 0.252 0.210 0.196 – 0.021 0.208 0.197 Parametric estimate
0.261 0.272 0.268 0.589 0.604 0.270 0.270 MC/ind.
0.235 0.212 0.213 0.025 0.024 0.213 0.211 MC/corr.

θ1 × 102 (mA−1) 0.084 0.071 0.069 – 0.040 0.068 0.069 Parametric estimate
0.073 0.072 0.073 1.883 0.120 0.072 0.071 MC/ind.
0.068 0.071 0.065 1.903 0.087 0.071 0.068 MC/corr.

θ2 × 103 (mV−1) 0.100 0.075 0.076 – 0.028 0.081 0.080 Parametric estimate
0.096 0.078 0.076 2.553 0.121 0.077 0.073 MC/ind.
0.081 0.078 0.075 2.573 0.089 0.077 0.073 MC/corr.

θ3 × 104 (V−1) 0.494 0.418 0.420 – 0.231 0.423 0.421 Parametric estimate
0.419 0.406 0.412 1.796 1.704 0.410 0.420 MC/ind.
0.417 0.409 0.410 1.795 1.702 0.414 0.416 MC/corr.

a Various weighting factors are used, as indicated. The upper data corresponds to potentiometric and the lower part to polarographic
data. Key as in Table 2.

estimate grounds. Further, the use of Eq. (11) and
the experimental-based weights yield very similar
results, whilst the effective variance weighting leads
to higher dispersion estimates. These conclusions
reflect the fact that error correlation between the per-
turbation and signal variables is not accounted for in
Eq. (14).

The parametric estimate of dispersion, as pointed
out before [5], is an acceptable choice as alternative
for the Monte-Carlo correlated simulation. Parame-
ter errors using this simple approach are only slightly
higher than those obtained through the more compu-
tationally expensive simulation methods.

The use of the model derivative in the weighting
functions (11) and (14) also deserves some com-
ment. A trial-and-error procedure has shown that
although the tested alternatives, Savitzky–Golay [6]
and iteratively-reweighting [7], lead essentially to

the same solutions, they behave differently in terms
of convergence. An optimized procedure consists in
using the Savitzky–Golay first derivative in the initial
iteration of the least-squares procedure, thus avoiding
problems caused by incorrect initial guess values of
parameters. The subsequent steps are conducted with
numerical derivatives iteratively updated. This en-
sures a faster convergence rate and fewer divergence
problems than maintaining the Savitzky–Golay values
in the whole process.

5. Conclusions

The first conclusion that can be drawn, and this
comes in the sequence of our previous work [5], is that
the fitting in both variables is not relevant for systems
such as those describe in here, for the obvious reason
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that the order of magnitude of the error in the pertur-
bation variable is considerably lower than that corres-
ponding to the signal variable. Another conclusion is
that several approaches in the weighting function can
be used to accurately estimate the relevant parameters,
namely, Eqs. (11) and (14) or even the constant weight-
ing function, although the latter must be viewed with
extreme care. The precision estimates are much more
dependent on the weighting procedure. In our view,
Eq. (11) should be employed for two reasons: first it
is easy to transpose to similar experimental condition
and, secondly, it yields results similar to weighting
based on experimental data. Also, it conveniently and
accurately describes the heterocedastic nature of the
signal variable for both the potentiometric titration
and polarographic methods. For these methods, exten-
sion to heterocedastic independent variables was not
deemed necessary. The effective variance method en-
larges parameter error estimates, but is still a valid
approach especially for conservative parameter error
estimates. It must, however, be used in conjunction
with an appropriate error description for conditions in
which it is difficult to determine experimental errors.
If one is seeking the simplest method, it must be
stressed that parametric estimates are, for both the
potentiometric and polarographic techniques, very
reliable in what concerns precision determinations.
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