Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/5184
Title: Voltammetric behavior of benznidazole at a DNA-electrochemical biosensor
Authors: La-Scalea, M. A. 
Serrano, S. H. P. 
Ferreira, E. I. 
Brett, A. M. Oliveira 
Keywords: Benznidazole; DNA-modified electrode; Action mechanism; DNA-biosensor
Issue Date: 2002
Citation: Journal of Pharmaceutical and Biomedical Analysis. 29:3 (2002) 561-568
Abstract: Benznidazole is a drug used commonly as a therapeutic agent against Chagas' disease in Brazil. To clarify the cytotoxic action of benznidazole the electrochemical reduction of benznidazole has been investigated using a DNA-electrochemical biosensor, prepared by modification of a glassy carbon electrode with DNA, and the results compared with reduction at a bare glassy carbon electrode. The dependence of peak potential with pH follows slopes of 59 and 52 mV per pH unit in acid media, respectively, which corresponds to a mechanism involving the same number of electrons and protons. In neutral and alkaline solution no significant dependence of peak potential with pH was found. During the electrochemical reduction of benznidazole the formation of the hydroxylamine derivative occurs, involving a total of four electrons. The potentials for reduction were less negative when using the DNA-modified glassy carbon electrode than at the bare glassy carbon electrode although the mechanism was the same, and at pH 7.51 the peak current was four times higher than that obtained with the bare electrode. The DNA-biosensor enabled pre-concentration of the drug onto the electrode surface and the in situ damage caused to the DNA on the electrode surface by the product of benznidazole reduction could be detected electrochemically. The results are in agreement with the hypothesis that the hydroxylamine derivative is the reactive species responsible for the cytotoxic action of benznidazole.
URI: https://hdl.handle.net/10316/5184
DOI: 10.1016/S0731-7085(02)00081-X
Rights: openAccess
Appears in Collections:FCTUC Química - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
fileb6937fbb756b4433b3739bf318756084.pdf228.96 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.