Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/4579
DC FieldValueLanguage
dc.contributor.authorJohnson, Charles R.-
dc.contributor.authorDuarte, António Leal-
dc.contributor.authorSaiago, Carlos M.-
dc.date.accessioned2008-09-01T11:34:40Z-
dc.date.available2008-09-01T11:34:40Z-
dc.date.issued2008en_US
dc.identifier.citationLinear Algebra and its Applications. 429:4 (2008) 875-886en_US
dc.identifier.urihttp://hdl.handle.net/10316/4579-
dc.description.abstractThere is remarkable and distinctive structure among Hermitian matrices, whose graph is a given tree T and that have an eigenvalue of multiplicity that is a maximum for T. Among such structure, we give several new results: (1) no vertex of T may be "neutral"; (2) neutral vertices may occur if the largest multiplicity is less than the maximum; (3) every Parter vertex has at least two downer branches; (4) removal of a Parter vertex changes the status of no other vertex; and (5) every set of Parter vertices forms a Parter set. Statements (3), (4) and (5) are also not generally true when the multiplicity is less than the maximum. Some of our results are used to give further insights into prior results, and both the review of necessary background and the development of new structural lemmas may be of independent interest.en_US
dc.description.urihttp://www.sciencedirect.com/science/article/B6V0R-4SMF2K9-2/1/e80ee40f33898e52f517c5d58dbfa5bcen_US
dc.format.mimetypeaplication/PDFen
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectHermitian matricesen_US
dc.subjectEigenvaluesen_US
dc.subjectMultiplicitiesen_US
dc.subjectMaximum multiplicityen_US
dc.subjectPath cover numberen_US
dc.subjectParter verticesen_US
dc.titleThe structure of matrices with a maximum multiplicity eigenvalueen_US
dc.typearticleen_US
item.grantfulltextopen-
item.languageiso639-1en-
item.fulltextCom Texto completo-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
file27076ee1c9ad4f7b91e0d9d26ed3900e.pdf166.07 kBAdobe PDFView/Open
Show simple item record

Page view(s)

79
checked on Sep 17, 2019

Download(s)

56
checked on Sep 17, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.