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1. Introduction

For a simple (labelled) graph G, let #(G) denote the set of all Hermitian matrices A = (a;;)
whose graph is G, i.e., fori # j, a;; # 0 if and only if {i, j} is an edge of G. No restrictions is
placed upon the diagonal entries of A (other than reality) by G. Since all that we consider about
A is permutation similarity invariant, the labelling of G is incidental (for reference only), and we
generally consider G to be unlabelled.

We are interested in 0 (A), A € #(G), especially the multiplicities of the eigenvalues, and,
particularly, the case in which G = T, a tree. We use conventional submatrix, subgraph notation
and often move informally between the two. If « is a subset of the indices N = {1, ..., n} of
A (resp. vertices of G), A(«) (resp. G — «) denotes the principal submatrix of A (resp. induced
subgraph of G) resulting from deletion of the indices (resp. vertices) «. A({i}) (resp. G — {i})
is abbreviated by A(i) (resp. G — i). Ala] or G[«] denotes the principal submatrix or induced
subgraph resulting from keeping only the indices or vertices a. If G’ = G[a] we often write
A[G'], meaning the principal submatrix A[a]. In case T is a tree and v is a vertex of degree k,
T — v is a forest consisting of k branches (trees) at T: 71, ..., Tx. We often assume this branch
notation without further explanation.

Let m 4 (A) denote the multiplicity of A as a root of the characteristic polynomial of the n-by-n
matrix A. We allow m 4 (1) = 0. Since we consider Hermitian matrices A, there is no ambiguity
between algebraic and geometric multiplicity. The vertex v of a tree T is called Parter for A in
A € %(T) (Parter, for short) if

mA(U)(A) =ma(X) + 1.
In the only two other possibilities (because of the interlacing inequalities [2])
ma@)(A) =ma(d) and mawy(A) =mad) — 1,

the vertex v is called neutral or a downer, respectively. In general, each of these can easily occur
and the theory is well developed in [6,9], with a summary of known results in [4]. A set of vertices
o of cardinality k is called a Parter set if

Mmae)y (M) =ma(d) + k.

In general a set of Parter vertices, each of which is Parter for A, A and T is not a Parter set.
(Examples will be discussed later.) By the status of a vertex, relative to a particular A, A, T, we
mean its classification as Parter, neutral or a downer.

Our purpose here is to more deeply understand the special structure occurring when an Hermi-
tian A € .%(T') has an eigenvalue A such that m 4 () = M (T'), the maximum possible multiplicity
for an eigenvalue among matrices in & (T').

Our main results appear in Section 4 and include: (1) no vertex is neutral if m4 (1) = M(T);
(2)forany T,ifm < M(T), then matrices A occur in & (T) for which m 4 (1) = m and for which
neutral vertices are present; (3) ma(X) = M(T) implies that for each Parter vertex at least two
adjacent vertices are downer vertices in their branches; (4) the status of no other vertex changes
with the removal of a vertex Parter for A when m 4(A) = M (T'); and (5) any set of Parter vertices
for A is a Parter set for A if m 4 (A) = M (T). Further observations are made in discussion involving
the main results, and several examples, that refine our results, are given in Section 5. In the next
two sections, we review necessary background and develop some useful lemmas that may be of
independent interest.
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2. Necessary background and motivation

Here, we summarize some necessary background, organized into subsections for easy ref-
erence. As elsewhere, we benignly blur the distinction between tree and matrix and between
subgraph and submatrix. In all statements, there is an implicit identified eigenvalue and ma-
trix relative to a given tree. For more thorough explanations or further background, see
[6.4].

2.1. Maximum multiplicity, path covers and residual path maximizing sets

For a given tree T, the maximum possible multiplicity M (T) may be characterized in two
combinatorial ways [3]. A path cover of a tree is a collection of vertex disjoint, induced paths
of T that cover the vertices of the tree. The least number of paths in a path cover is the path
cover number P(T). A residual path maximizing (RPM) set for T is a collection of g ver-
tices of T, whose removal from T leaves a forest of p paths in such a way that p —¢q is a
maximum. The maximum multiplicity M (T') is equal to both P(7') and this maximum p — q.
A matrix A € % (T') achieving m4(A) = M(T) may be constructed by assigning A as small-
est eigenvalue to each submatrix of A corresponding to a path after removal of an RPM
set for T. The vertices of this RPM set will then form a Parter set (see Section 2.3) for A
in A.

2.2. Parter vertices and downer branches

The survey [6], which contains original material, describes the relation between a Parter vertex
v for an eigenvalue A of A € ¥(T) and neighbors of v that are downer vertices for A in their
branches. For each eigenvalue A such that m 4 (A) > 2, there exist Parter vertices (and they may
exist for eigenvalues of multiplicity 0 or 1). If v is a Parter vertex (for A in A € .%(T)), then there
is a neighbor u; of v that is a downer vertex for A in its branch T;, i.e., in A[T;]. We call such a
branch T; a downer branch for the Parter vertex v, and, conversely, if v has a downer branch, then
v is Parter for A.

This downer branch mechanism for identifying Parter vertices is subtle and very important. In
general, there may be only one downer branch at a Parter vertex, but we show that if A attains
maximum multiplicity, there must be at least two, a strong structural distinction in the maximum
multiplicity case.

Whenever A € 0 (A(v)) for any vertex v of T such that A € % (T), there will be at least one
Parter vertex for A (not necessarily v), even if m4(A) = 0 or m4 (1) = 1. In this event, the above
downer branch mechanism is still in place.

2.3. Parter sets and fragmenting Parter sets

For an identified eigenvalue A, removal of a Parter set of k vertices increases the multiplicity
of A by k. By interlacing, each vertex in a Parter set is, initially, individually Parter and each
is Parter in its subtree after removal of any subset of the others. On the other hand, a set of
initially Parter vertices need not be a Parter set [5], but, in the event the relevant eigenvalue
attains M (T'), a set of Parter vertices will be a Parter set, another strong structural distinction
(Corollary 9 below). We call a Parter set fragmenting (a “fragmenting Parter set” or FPS, for
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short) if its removal from T leaves a forest in which the multiplicity of X is at most 1 in the
submatrix of A associated with each tree of the forest. Of course, FPS’s always exist and any
maximal (wrt inclusion) Parter set will be one. An FPS is a “fully fragmenting Parter set” if
no vertex of any of the trees that remain is Parter, i.e., none of the trees may be further broken
down.

In general, the trees that remain after an FPS or fully FPS is removed may be rather arbitrary,
but, we will see that if A attains M (T'), removal of any Parter vertex leaves trees, in each of which
maximum multiplicity is attained by A. Thus, if A attains M (T'), removal of an FPS leaves only
paths, and, in fact, any FPS is an RPM, another structural distinction.

2.4. Facts about paths

In all of this, facts about paths are especially basic and important. A rather complete theory
was developed in [6].

It has long been known that if T is a path, M(T) = 1, i.e., the eigenvalues of A € &(T) are
distinct. Moreover, paths are the only graphs for which maximum multiplicity is 1 [1], and this
is obvious among trees. It is also known that removal of a pendent vertex from a path results in
strict interlacing of eigenvalues, which need not be the case among trees that are not paths. A
pendent vertex of a path is a downer vertex for any eigenvalue occurring in that path. Removal
of an interior vertex from a path may not result in strict interlacing, but if A appears in both T
and T — v, then v is Parter for A and both branches at v are downer branches at v. Of course, if A
appearsin T (i.e., as an eigenvalue of A € %(T)), then A attains M (T) = 1, and we will see that
the occurrence of two downer branches generalizes to all cases of maximum multiplicity.

In the context of general trees, we say that a path is pendent at a vertex v, not in the path, if
the only vertex of the path that is adjacent to v is a degree one vertex.

3. New structural lemmas

Lemma 1. Let T be a tree on n vertices, A € S (T), and suppose that there is an eigenvalue A
of A of multiplicity M(T). If v is a Parter vertex for A we have the following.

(1) The degree of v in T is at least 2.
(2) If Ty, ..., Ty are the branches of T at v, then mai1;)(A) = M(T;),i =1,..., k.

Proof. For (1), it suffices to note that any Parter vertex for an eigenvalue belongs to an FPS and,
in case the multiplicity is M (T'), each FPS is an RPM set of T'. Since a pendent vertex cannot
belong to an RPM set (because max[p — ¢] cannot be achieved when a pendent vertex is among
the ¢ removed vertices from 7 in order to leave p components) we conclude that a Parter vertex
for an eigenvalue of multiplicity M (7)) must have, at least, degree 2. This also follows from the
fact that P(T — v) < P(T) when v is pendant in T'.

For (2), note that since A(v) = A[T]® --- D A[T] and v is Parter for A, we have that
mawy(A) = M(T) + 1 = mary(A) + - - +marr,(A). In order to obtain a contradiction, we
suppose that m 4(7;1(A) < M (T;) for a particular branch of T at v. If we consider a matrix B €
S(T) such that mp[r;)(A) = M(T;),i =1, ..., k, we would have mpu)(A) = M(Ty) +--- +
M(Ty) > ma@)y(A) = M(T) + 1 and, by the interlacing inequalities, we obtain mg(A) > M(T),
which is a contradiction because M (T') is the maximum possible. [
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Lemma 2. Let T be a tree on n vertices, A € S (T) and X be an eigenvalue of A. Let u1 and us
be two adjacent Parter vertices for A relative to A. We denote by T the component of T — u»
containing uy and by T, the component of T — uy containing u>. Then we have the following:

(1) uy is a Parter vertex for A relative to A[T1] if and only if u; is a Parter vertex for A relative
to A[T].

(2) uy is a downer vertex for A relative to A[T1] if and only if uy is a downer vertex for A relative
to A[T,].

(3) Neither uy is a neutral vertex for A relative to A[T1] nor is uy a neutral vertex for A relative
to A[T>].

Proof. Firstnotethat A(u1) = A[T; —u1] @ A[T>]and A(up) = A[T1] & A[T> — uz] and, since
u1 and u; are Parter vertices for A relative to A, we have m g, )(A) = m @y (A) =ma(X) + 1.

If u; is Parter for A relative to A, then u, being Parter for A relative to A[73] implies that
M A{uy,u)(A) = ma(X) + 2. Thus, the initial removal of u, means that u is Parter for A relative
to A[T1]. Similarly, u| being Parter for X relative to A[77] implies that u5 is Parter for A relative
to A[T2], which verifies (1). (Note that this argument does not depend upon the adjacency of u
and u,.)

For (2), we suppose without loss of generality that «1 is a downer vertex for A relative to A[T1].
Since

mAT () + MATy—us ) (M) = MA@y (M)
mA@u;)(A)
MA[T —u,1(A) + mar(A)
marr () — 1+ mapr, (1)

we have m A[r,—u,](A) = ma[r)(A) — 1, i.e., up is a downer vertex for A relative to A[T>].

For (3), in order to obtain a contradiction, we suppose that # is a neutral vertex for A relative
to A[T1], i.e., marr —u; (M) = marr(A). Because u; is Parter for A relative to A, we conclude
that 77 is not a downer branch for A at u; relative to A and, thus, u, must be Parter for A relative to
A[T>]. By (1), the vertex u# | must be Parter for A relative to A[T1], which gives a contradiction. [

Corollary 3. Let T be a tree on n vertices, A € S (T) and ) be an eigenvalue of A. Let uy and
uy be two adjacent Parter vertices for X relative to A. We denote by Ty the component of T — u»
containing uy and by T, the component of T — u| containing u,. Then uy and uy form a Parter
set for A relative to A if and only if uy and uy are Parter vertices for A relative to A[T1] and
A[T»], respectively.

Lemma 4. Let T be a tree on n vertices, A € & (T) and ) be an eigenvalue of A of multiplicity
M(T). Let uy and uy be two adjacent Parter vertices for A relative to A. We denote by Ty the
component of T — uy containing uy and by T, the component of T — uy containing u>. Then, u
is a Parter vertex for A relative to A[T1] and u; is a Parter vertex for ) relative to A[T], i.e., u;
and uy form a Parter set for A relative to A.

Proof. Because u; and u» are individually Parter vertices for A, by (2) of Lemma 1, we have that
marr;)(A) = M(T;),i = 1, 2. In order to obtain a contradiction, we suppose that «; and u» do not
form a Parter set. By Lemma 2 and Corollary 3, this assumption implies that u; is a downer vertex
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for A relative to A[T;], i.e., ma[T,—u;)(A) = mar;j(A) — 1= M(T;) — 1,i =1, 2. We first note
that neither 77 nor 7> may be a path. If, for example, 7T, were a path, any component of 7 — u»
would be a path (having X as an eigenvalue by Lemma 1, part (2)) and, hence, these paths should
still be downer branches for A at u; relative to A[T — u1], which implies that #; and u> form a
Parter set. Therefore, we may assume that ma[r;j(A) > 1,i =1, 2.

Since u is Parter for A, we have that m 4,y (A) = M(T) + 1. Because A(u1) = A[T1 —u1] ®
A[T»] and under the hypothesis that #1 and u> do not form a Parter set implies that u; is a
downer vertex for A relative to A[T}], it follows that M(T) +1 = M(T) — 1 + M(T>»), ie.,
M(T) = M(Ty) + M(T2) — 2.Sincem[7;)(A) > 1,i = 1, 2, there must exist a FPS of k; vertices
of T; whose removal from 7; leaves M (T;) + k; paths in which, each of the corresponding direct
summands of A has A as an eigenvalue of multiplicity 1. By hypothesis, u; is not Parter for
A relative to A[T;], i = 1, 2, so we may conclude that u is a vertex of one path T’ among the
M (Ty) + ki paths and u; is a vertex of one path T among the M (T3) + k paths. If we connect T’
and T” by the edge {11, us} we obtain a subtree 7" of T. Now, consider a matrix B”" € S (T"")
such that A is an eigenvalue of B” and change A[T"’] to B” in A to obtain B € ¥(T). By
construction, we have M (T1) + M(T>) + k1 + ko — 1 direct summands of B having A as an
eigenvalue, after the removal of k| + k; vertices and, by the interlacing inequalities, it implies
that mp(A) > M(T)) + M(T;) — 1,i.e., mp(L) > M(T), which is a contradiction. [J

Lemma 5. Let T be a tree on n vertices and A € S (T). Suppose that v is a vertex of T and that
u is a neighbor of v whose branch at v, T, satisfies m oipr)(A) = M(T"). Then, either u is Parter
for A in T’ or v is Parter for A in T (or both).

Proof. Suppose that u is not Parter for A in T’. If T’ is a path, then u is a downer in T’, either
because u is pendent in 7’ or because u is interior in 7’ and not Parter. Since u is a downer for v,
v must be Parter for A. If 7’ is not a path, then M (T’) > 1 and there is a fully FPS for A in T’ that
does not contain u. This is a Parter set for A in 7’; call it Q. Q is also a Parter set in T because,
by Lemma 1, every Parter vertex must have a downer branch not in the direction of u. The path
of T’ in which u occurs (and in which A must occur) is pendent at v after removal of the set Q
from T to produce a tree T”, which again means that v is Parter for A in 7" and that Q U {v}is a
Parter set for A in 7. Thus, v is Parter for A in 7. 0O

4. Main results

Theorem 6. Suppose that T is a tree on n vertices and that A € & (T) and A is an eigenvalue of
A of multiplicity M(T). Then, no vertex of T is neutral for A, A.

Proof. Supposethat A € 0(A), A € L(T)andm(A) = M(T). Then, suppose that v is a neutral
vertex in T for A, A and that 71, ..., Ty are the branches of T at v and u; is the neighbor of v in
T;,i =1,...,k. Then,

k k
M(T) =ma() =maw) (W) =Y _mar;(A) < Y MIT;].
i=1 i=1

By interlacing, either
k k
> M[T;]=M(T) (Casel) or » M[T;]=M(T)+1 (Case?2).
i=1 i=l1
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In Case 1, we reach a contradiction as follows. By Lemma 5 u; is Parterfor A in 7;,i = 1, ...,k
(asmarr;)(A) = M(T;),i =1, ..., k) because v is not Parter for A in 7. Thus, since each u; has
a downer branch for A in T;, each has a downer branch for A in T — v and, thus, {u{, ..., u;}isa

Parter set for A in 7' — v. Because v is neutral, we have

,,,,, uk})()”)'
Since T — {uy, ..., ux} contains v, we may define another matrix B € & (T') such that B[v] = A,
and, otherwise, B agrees with A. Now,
k k
MBuyei) V) = D _magW) +k+1=Y M(T) +k+1=MT)+k+1,
i=1 i=1
which implies mp(A) > M(T) + 1, by interlacing, a contradiction, as B € ¥ (T).
In Case 2, we consider two possibilities: k = 1, i.e., v is pendent (Case 2a) and k > 1 (Case
2b).
In Case 2a, T — v = T1, and, as v is neutral, m ) (A) = M(T) = M(T) — 1. Since the path
cover number cannot increase with the deletion of a pendent vertex, we then have
M(T) =14+ M(T) > M(T) = P(T) = P(Th) = M(Th),

a contradiction showing that Case 2a cannot occur.
In Case 2b (k > 1), after an appropriate numbering, we have

mA[T[](k)ZM(Y}), i=1,...,k—1,

and

mar (M) = M(Ty) — 1.
By Lemma 5, u; is Parter for A in 7;,i = 1, ...,k — 1, or else v is Parter for A in T (and, thus,
not neutral). Since u; is Parterin T; for A, i =1, ...,k — 1, {uy, ..., ur_1} is a Parter set for A
in T, as verified by the same downer branches (which are branches of T atu;,i =1, ...,k — 1).

Based upon this, we may calculate
MAGQuy, .y ) M) = M(T) +k -1
=[MT)+- - +MT—D)I+MT) —1+k—1.
But, also, definitionally,
MA(u, .1 ) A = marr]A) + - - +man_ 1A + map4n ) +k —1
=MT)+---+MT—1) + MT +v) +k—1,

the second equality following from Lemma 1. Comparing the two expressions form 4 u,,....u,_ 1) (A),
we conclude that

M(Ty +v) = M(T) — 1,

a contradiction, as P (Ty) cannot exceed P(T; +v). [

Theorem 7. Suppose that T is a tree on n vertices and that A € (T and X is an eigenvalue of
A of multiplicity M(T). Then, any Parter vertex for A has at least two downer branches.
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Proof. Suppose to the contrary that v is a Parter vertex, of degree k, for A with only one downer
branch T with vertex u adjacent to v. By (1) of Lemma 1, k > 2. Consider the other branches
T; at v with u; adjacentto v, i =2, ..., k.

By (2) of Lemma 1, A is an eigenvalue of each A[7;] with multiplicity M (7;). Thus, by Theorem
6, each u; is a downer or Parter for A in 7;. Under our hypothesis, fori =2, ..., k, u; is not a
downer and so is Parter in 7;. Since u; is Parter in 7;, i = 2, ..., k, it is Parter in T'; in fact
{uz, ..., ur} is a Parter set in T. Let T’ be the component of T — {u5, ..., ux} that includes v.
There, v is pendent and still Parter, as T} is a downer branch, and X is an eigenvalue of A[T'] of
multiplicity M (T”’). By Lemma 1, this is a contradiction. [J

Theorem 8. Suppose that T is a tree on n vertices and that A € & (T) and X is an eigenvalue
of A of multiplicity M(T). Then, upon removal of a Parter vertex for A, A in T, no other vertex
changes status.

Proof. Call the removed Parter vertex v. By (2) of Lemma 1, each branch at v must display
maximum multiplicity for A. Thus, by Theorem 6, no branch contains a neutral vertex for A. Thus,
it suffices that any vertex u of T other than v is Parter after removal of v if and only if it was Parter
before. The implication “Parter after” implies ‘“Parter before” is straightforward. If u is Parter
after removal of v, then {u, v} forms a Parter set in 7. It follows that ¥ must have been initially
Parter (by counting based upon the interlacing inequalities).

The implication “Parter before” implies “Parter after” is more subtle and, generally, requires
that we are working with maximum multiplicity. Suppose that u# # v is Parter before removal of
the Parter vertex v. Since u was Parter before removal of v, by Theorem 7, it has at least two
downer branches. Thus, at least one of them does not include v and remains after the removal of
v. Thus, u (by virtue of having a downer branch) remains Parter after removal of v, completing
the proof. [J

Note that in the context of the above proof, it is possible that # have a downer branch containing
v, so that having additional downer branches is important.

Corollary 9. If T is atree onn verticesand A € & (T) and A is an eigenvalue of A of multiplicity
M(T), then the set of all (initially) Parter vertices for A, A in T is a Parter set of vertices for A, A
inT.

Proof. As Parter vertices are removed from 7', all initially Parter vertices remain Parter and may
be removed to further increase the multiplicity of A. [

Lemma 10. In any tree on n > 3 vertices, there exists a vertex with at least two pendent
paths.

Proof. Let T be atree onn > 3 vertices. For purposes of this proof, we may assume, without loss
of generality, that 7 has no vertices of degree 2. The claim is obviously true for a path, and any
other tree may be “compressed” (via reverse edge-subdivision) to one without degree 2 vertices
and some vertices of degree at least 3 in such a way that the occurrence of pendent paths (now
pendent vertices) or the degrees of remaining vertices is not changed.

Now, every vertex is either degree 1 (pendent) or high-degree (at least 3). Let p be the number
of former and % the number of latter, so that p + h = n, the number of vertices of T'.



C.R. Johnson et al. / Linear Algebra and its Applications 429 (2008) 875-886 883

Since the total degree of all vertices of T is 2(n — 1), we have
3h+p<2n—-2=2p+2h—-2
from which we conclude that
h<p-2,
which implies that
p > h.

Since the number of pendent vertices exceeds the number of high-degree vertices, there must be a
high-degree vertex upon which at least two vertices are pendent. Thus, the original, uncompressed
tree had two pendent paths at the same vertex, and the proof of the claim is complete. [

See also [10] for a different proof.

Lemma 11. Let T be a tree on at least three vertices. Then there exists an RPM set whose vertices
may be numbered vy, . . ., vg4 so that removal of vi 1 fromT; = T — {vy, ..., v;} leaves paths not
present in the forest T;,i =0,...,q — 1.

Proof. Apply the previous Lemma 10 to obtain a vertex v; with at least two pendent paths.
According to [7], this vertex may be removed on the way to maximizing p — g. Now, another
application of Lemma 10 to any component of the resulting 77 that is not a path produces v
and 73. Continuing in this way until only paths remain, produces the vy, ..., v, claimed in the
lemma. [J

Theorem 12. Suppose that T is a tree and that 0 < m < M(T) is an integer. Given ) € R, there
isan A € L (T) such that m (L) = m and such that there are neutral vertices in T for A, A.

Proof. In case T is a path, even on one vertex, the conclusion is immediate by choosing A with
the smallest eigenvalue greater than A.

Otherwise, choose an RPM set of ¢ vertices vy, ..., v, of the type given in Lemma 11. From
the “new” paths in 7; (previously pendent in 7;_1), choose and identify one as P;,i =1, ..., q.
There is a total of M(T') + g paths in T, including Py, ..., P,. Choose m + g of them, including
Py,...,P; togive Py, ..., Py, Pyy1, ..., Pyyp. This leaves M(T) —m > 0 paths. For each
path P;,i =1,...,m + ¢, construct a matrix A; € & (P;) with X as its smallest eigenvalue. By
Perron—Frobenius applied to a diagonal similarity of o;I — A;, the smallest eigenvalue of any
proper principal submatrix of A; is greater than . For the other M (T') — m paths, choose matrices
Ai,i=m+q+1,..., M(T) + g, so that the smallest eigenvalue is greater than A. Note that
each vertex of P;,i = 1,...,m + q,1is adowner for A, A; and, by the interlacing inequalities, for
i=m+q+1,...,M(T)+ g, no principal submatrix of A; has A as an eigenvalue.

Now let A be any matrix in .’(T') with principal submatrices Ay, ..., A (1)+4 in the appro-
priate positions. Then, in T, {vy, ..., v4} is a Parter set for A, because in 7; 1, P; is a downer
branch at v;, i = 1,...,q (Tp = T). Since ma[r,1(A) = m + q, by design, m4 (1) must have
been m.

Finally, we show that any vertex v that lies in one of the final paths P;, otherthan Py, ..., Py,
is neutral in T for A, A. Delete one of these vertices from T to get T’. Since {vy, ..., vy} is a
Parter set in 7”7 for A, A(v), for the same reason as before, and since MA[T,\(v)(A) = m + g, we
conclude that m 4, (1) = m and, thus, that v is neutral in T for A, A. O
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Now, the characterization Theorem 13 is just the logical combination of Theorems 6 and
12.

Theorem 13. Let m be a nonnegative integer and T a tree on n vertices. There is a matrix
A € P (T) and an eigenvalue ) € o (A) such that m s (A) = m and such that there are neutral
vertices in T for A, A if and only if m < M(T).

5. Examples

We give here several examples that serve various purposes: (1) to show how our ideas can be
used to precisely classify some vertices; (2) to limit the generality of results that we have proven;
and, as a by-product, (3) to illustrate our results.

Among all matrices A € & (T) that have an eigenvalue X satisfying m 4 (A) = M (T), some of
the vertices must be downers for A (including, at least, the pendent vertices), some (perhaps the
empty set) must be Parter, and the rest (also, perhaps, the empty set) are ambiguous (downers for
some such A and Parter for others).

This is because of Theorem 6 and Theorem 7. In general, it is difficult to classify vertices of
the first and second type (though it can be done), but often it may be done easily.

First, consider the tree

which was, early on, difficult for the determination of multiplicity lists. We have M (77) =4 =
P(Ty).If A € ¥ (T1) and m 4 (1) = 4, each of the 6 pendent vertices must be downers, and each of
vertices 2, 3, 4 lies in every RPM set (there happens to be only the one: {2, 3, 4}), so that each must
be Parter. Vertex 1, with no downer branches, cannot be Parter and, so, must be a downer. Thus,
every vertex is unambiguously classified. Further, if the multiplicity list is 4, 2, 2, 1, 1 (which
occurs [8]), no vertex can be neutral for any eigenvalue. The assignment must be A to each vertex
1,5,6,7,8,9, 10 to achieve m4(A) =4 and i and t to each path 5 -2 —6,7 —3 — 8 and
9 — 4 — 10 to achieve m 4 () = m4(t) = 2. The two multiplicities of 1 must correspond to the
largest and smallest eigenvalues, via Perron—Frobenius [2], so that, for them, every vertex is a
downer. Since every vertex is easily classified as Parter or downer for u and 7, in this case, no
vertex is neutral for any eigenvalue. This limits generalization of Theorem 6.

It may also happen that no vertex is unambiguously Parter, even when the maximum multiplicity
is attained. Consider the tree

@ ® 6
=  ©O—0—0O
® ® O
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M(T,) =3 = P(T»),andifmy (1) = 3for A € ¥ (T3), each pendent vertex is a downer. However
each of the subsets {2}, {1, 3}, {1, 2}, {2, 3} or {1, 2, 3} of {1, 2, 3} may be Parter, so that no vertex
is unambiguously Parter.

In contrast to 77 it can happen that, even when M (T') is attained and all other eigenvalues are as
multiple as possible, there still may be a neutral vertex for a multiple eigenvalue (of multiplicity
less than M (T)). Let

M (T) = 3, and for the assignment shown, the multiplicity list is 3, 2, 1, 1, 1, as concentrated as
possible. Yet, the top vertex is neutral for the multiplicity 2 eigenvalue (and a downer for the
multiplicity 3 eigenvalue).

Now let

M (Ty) = 3, and m4 (1) = 2 with the assignment shown. Vertices 1, 2 and 3 are all Parter for A,
but {1, 2, 3} is not a Parter set, in contrast to Theorem 8.

We also note that it is possible to have arbitrarily many Parter vertices for an eigenvalue
attaining M (T') and have each one have only two downer branches. Consider

A0 20O A A
T5 -

NORIOR A

If there are 3k vertices, then M(T) = P(T) = k,m()) = k and each of the k interior vertices
is Parter. However, the two pendent vertices at each are the only downer branches for each Parter
vertex.
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