Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/44399
Title: Regularity for anisotropic fully nonlinear integro-differential equations
Authors: Caffarelli, Luis A. 
Leitão, Raimundo 
Urbano, José Miguel 
Issue Date: 2014
Publisher: Springer
Project: PEst-C/MAT/UI0324/2011 
Abstract: We consider fully nonlinear integro-differential equations governed by kernels that have different homogeneities in different directions. We prove a nonlocal version of the ABP estimate, a Harnack inequality and the interior \(C^{1, \gamma }\) regularity, extending the results of Caffarelli and Silvestre (Comm Pure Appl Math 62:597–638, 2009) to the anisotropic case.
URI: http://hdl.handle.net/10316/44399
Other Identifiers: 10.1007/s00208-014-1050-6
DOI: 10.1007/s00208-014-1050-6
Rights: embargoedAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat 
Urbano_paper4.pdf383.7 kBAdobe PDFView/Open
Show full item record

Page view(s) 10

784
checked on Jul 16, 2019

Download(s)

24
checked on Jul 16, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.