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ABSTRACT. We consider fully nonlinear integro-differential equations
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1. INTRODUCTION

In this work we develop a regularity theory for elliptic fully nonlinear
integro-differential equations of the type

ITu(z) = igf s%p Logu(xz) =0, (1.1)
where
Logu(@)i= [ (u(+9) ~u(o) = Vu(o) - pxm ) Ko () dy, (12

and the kernels K, are symmetric, K,g(y) = Kqg(—y), and satisfy the
anisotropic bounds

)\Co- ACU
S Jyilnter < Kap (y) < ST g Vy e R", (1.3)
i= i
for 0 < A< A 0<o0; <2, and ¢, = ¢(01,...,0,) > 0 a normalization

constant.

Equations of type appear extensively in the context of stochastic
control problems (see [12]), namely in competitive stochastic games with
two or more players, which are allowed to choose from different strategies at
every step in order to maximize the expected value of some function at the
first exit point of a domain. Integral operators like (1.2]) correspond to purely
jump processes when diffusion and drift are neglected. The anisotropic set-
ting we consider is bound to be of use in the context of financial mathemat-
ics, namely for Black-Scholes models that use certain jump-type processes
instead of diffusions (cf. [11]).
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The isotropic version of the problem, with (1.3 replaced by

A(2—o0) <K, (y)SA(Z_U)

n
Tyt S Tyrte vy e RY, (1.4)

for 0 < o < 2, is studied in [4], exploring the analogy between ellipticity
and the condition

M v(z) <I(u+v)(z)—Iv(z) < Mfv(z), VyeR™

Here, £ is the class of operators L3 whose kernels satisfy and the
operators
M u(x) = Llrelfc Lu(z) and Mpu(z):= ilgc) Lu (x)

correspond to the extremal Pucci operators in the theory of elliptic equations
of second order. The non-variational approach to regularity theory for (sub
and super) viscosity solutions of the isotropic version of equation is a
nonlocal version of the strategy used in [5] for second order fully nonlinear
elliptic equations.

In the classical non-variational approach, the crucial step towards a regu-
larity theory is the celebrated Aleksandrov—Bakel’'man—Pucci estimate (ABP
estimate, in short), which amounts to the bound

1/n
supu < C (n) (/ (f+)n> , (1.5)
By {T=u}nBy

for any viscosity subsolution u of the maximal Pucci equation with right-
hand side (—f) taking non-positive values outside the unit ball By . Here, I’
is the concave envelope of u in Bs. The technical advantage of the ABP esti-
mate stems from relating a pointwise estimate with an estimate in measure.
More precisely, u (0) > 1 implies

1 1
1< O fllpee T = u} 0 Bifr < Cf| ||z [{u = 0} 0 By~ .

In the nonlocal setting, the ABP estimate must be modified in face of the
structural differences of the operator. In the isotropic case of [4], we have to
replace by the following two assertions, which still give access to the
regularity theory:

i. u stays quadratically close to the tangent plane to I' in a large portion
of a neighbourhood around a contact point:

{y €8vnQju(y) >T(y) - (maXﬁ) d?}

J

><|Qjl;

ii. I" has quadratic growth and therefore

@) < (s @
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for a finite family of disjoint open cubes {Q;} with diameters d; < 1= such

8vn
that
{fu=T}c|JQ; and {u=T}NQ;#0,
J

where VI' stands for any element of the superdifferential of I', and the
constants ¢ > 0 and C' > 0 only depend on dimension and the ellipticity
constants.

Then, using i. and ii., we get from u(0) > 1,

n

L < Clflze~

1
> — — o ¢ N B
fuzr- it}

1
> - w~ o MNB
{uz —iflu= | 5o

which is still enough to complete a regularity theory. A covering lemma by
open cubes @); that satisfy assertions i. and ii. is crucial in obtaining
in the nonlocal case, for which the classical inequality does not hold
(but see [§] for a nearly classical ABP-type estimate in this context).

To treat the anisotropic case we use the same strategy as in [4] but the
anisotropic geometry driven by the kernels K,z requires a refinement of the
techniques (see also [9], where the bounds on the kernels can degenerate
to be zero in some directions). We comment in the sequel on the main
difficulties we came across and how to overcome them.

n

< C|fllpee , (1.6)

(1) Assertion i. At this step of the analysis, the challenge is to find
the suitable geometry of the neighbourhoods of the contact points
within which there is a (large) portion where a subsolution u stays
quadratically close to the tangent plane to I and such that, in smaller
neighbourhoods (with the same geometry), the concave envelope I'
has quadratic growth. A careful analysis of the anisotropic nonlocal
version of inequality Mzu > — f satisfied by u at the contact points
allows us to conclude that the appropriate geometry is the geometry
determined by the level sets of the kernels Kg:

67’ (‘T) = {(y17- . 7yn) € Rn : Z |y’b - xi’n+ai < 7"}7

i=1
for z € {I' = u} N By. It is also here that we choose the appropriate
normalisation constant:

3 1
=140 :
“ +n+0'ma,x+ Z n+0']

Uj7£0'max

(2) Assertion . Given a positive number h > 0, a fine analysis allows
us to conclude that if a concave function, for instance the concave
envelope I', remains below its tangent plane translated by —h in a
(universally sufficiently small in measure) portion of a (sufficiently



4 L. CAFFARELLI, R. LEITAO, AND J.M. URBANO

large) annulus of the unit ball, for example B; \ B 1 then I' 4+ h is
above its tangent plane in the interior ball of the annulus, in this case
Bi. In the anisotropic case, the difficulty is to extend this argument

2
to the anisotropic balls ©,. Through the anisotropic transformation
T :R™ — R", defined by

1
Te; :=rrtoie;,

and taking into account that the composition of a concave function
with an affine function is still concave, we extend this fine analysis
to ellipses. We then use the previous step and the symmetry of
the anisotropic balls O, with respect to x to conclude that I' grows
quadratically in such anisotropic balls.

(3) Covering Lemma. In [4], the Besicovitch Covering Lemma is used.
Our covering is naturally made of n-dimensional rectangles R; and
we invoke a covering lemma from [6]. We stress that this covering
lemma allows for a change of direction in the homogeneity degrees
0, but each g; must remain constant. Degenerate spatial changes of
the homogeneities ¢;, arising for example in the context of spherical
operators or other special weights, would require the use of a more
general covering lemma like the one in [7]. In adapting our results
to that case, the main difficulty lies in the use of the barriers and we
plan to address this issue in a forthcoming paper.

With this at hand, we then use the natural anisotropic scaling to build an
adequate barrier function and, together with the nonlocal anisotropic version
of the ABP estimate, we prove a lemma that links a pointwise estimate
with an estimate in measure, Lemma [5.I] This is the fundamental step
towards a regularity theory. The iteration of Lemma [5.1] implies the decay
of the distribution function A, := |{u > ¢}| and the tool that makes this
iteration possible is the so called Calderén -Zygmund decomposition. Since
our scaling is anisotropic we need a Calderén -Zygmund decomposition for
n-dimensional rectangles generated by our scaling. A fundamental device
we use for that decomposition is the Lebesgue differentiation theorem for
n-dimensional rectangles that satisfy the condition of Caffarelli-Calderén
in [6]. Then we prove the Harnack inequality and, as a consequence, we
obtain the interior C7 regularity for a solution u of equation and,
under additional assumptions on the kernels K,g, interior O estimates.

We finally observe that the power of the estimates obtained in [4] is re-
vealed as ¢ — 2. In fact, since the estimates remain uniform in the de-
gree o, it was possible to obtain an interesting relation between the theory
of integro-differential equations and that of elliptic differential equations
through the natural limit:

n2_
im [ 22-0)

e e (u(x+y)+u(r—y)—2u(z))dy
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= lim — (=A)2 u(z) = Au(z),

o—2
where ¢, > 0 is a constant. This contrasts with previous results in the lit-
erature on Harnack inequalities and Holder estimates for integro-differential
equations, with either analytical proofs [I0] or probabilistic proofs [1} 2] [3]
13], whose estimates blow up as the order of the equation approaches 2.

We emphasize that our estimates are also stable as oy := min{oy,...,0,}
approaches 2. An heuristic analysis of the limiting behaviour of the oper-
ator against a second order polynomial seems to indicate that we get, as
in the homogeneous case, a second order fully nonlinear PDE. In order to
deduce what would be the limit of LY gU aS Omin —> 2, it is enough to eval-

uate Liﬂu = aj;Djju on quadratic polynomials, for example on a function

u(z) ~ 27 near the origin. For instance, if the kernel K,5 behaves near the

origin like

Co
Kap (y) = S it
1=
then
u(y1) dy
L 0) =c, . .
apu(0) = /]Rn TP KRR W 7 i

=2 ‘y1|n+al

Denoting ¢; = 2 — 0; and integrating on y;, j # 1, we obtain an expression

of the form
_ u(y1)
Lapu(0) = co /Rn |1 [3=7(O)”

where, as # — 0, v behaves at first order like

o) — 301 + 2?22 0;

" n+2

For Lqp to converge as § — 0, we must choose ¢, ~ ) 6;. In that case, I?
will converge to a standard Isaac’s equation.

The paper is organised as follows. In section 2] we gather all the necessary
tools for our analysis: the notion of viscosity solution for the problem ,
the extremal operators of Pucci type associated with the family of kernels
K3 and some notation. Section [3| where the nonlocal ABP estimate for a
solution u of equation (|1.1)) is obtained, is the most important of the paper.
Sections [4 and [f] are devoted to the proof of the Harnack inequality and its
consequences.

2. VISCOSITY SOLUTIONS AND EXTREMAL OPERATORS

In this section we collect the technical properties of the operator I that
we will use throughout the paper. Since K,z is symmetric and positive, we
have

Lo (@) = PV [ (u(e+9) ~u(2)) Kas (0) dy

n
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and
1

Lo (@) = 5 [ (wla+y) = ule—y) = 2(0)) Kup () do

For convenience of notation, we denote
5 (uy,y) = u (o +y) +u(z —y) - 2u ()
and we can write

Lag= | 6 (u,z,y) Kag (y) dy,
for some kernel K,g.
We now define the adequate class of test functions for our operators.

Definition 2.1. A function ¢ is said to be C1! at the point =, and we write
¢ € CL1 (x), if there is a vector v € R™ and numbers M, 19 > 0 such that

6 (z+y) = ¢ (2) — vyl < Mlyl*,
for |x| < mo. We say that a function ¢ is Cb! in a set €2, and we denote

¢ € C11(Q), if the previous holds at every point, with a uniform constant
M.

Remark 2.2. Let u € CY(2) N L (R™) and M > 0 and 79 > 0 be as in
definition 2.1l Then we estimate

Logu(x) = PV 6 (u,z,y) Kap (y) dy

Rn
S 4CO-A|U|LOO(R7L)/ n—wdy+2MCa-A %dy
RO\ By, 2ict [Yil"T By 2uic1 1Yl
242 —(0max—0Omin 1
< |degAlu|p=2 2 770( )/R 5 WmderC(n,A,M,no)]
10

—Omax
= |:CO'C (n’ A, |U|L°°) L +C (n, A, M, 770):|
min
and conclude that ITu (z) € R.
We now introduce the notion of viscosity subsolution (and supersolution)

w in a domain €, with C? test functions that touch u from above or from

below. We stress that u is allowed to have arbitrary discontinuities outside
of Q.

Definition 2.3. Let f be a bounded and continuous function in R™. A
function v : R® — R, upper (lower) semicontinuous in Q, is said to be
a subsolution (supersolution) to equation Iu = f, and we write Tu > f
(Iu < f), if whenever the following happen:

(1) zo € Q is any point in €;
(2) By (z0) C €, for some r > 0;
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(3) ¢ € ¢ (B (w0) )
(4) ¢ (z0) = u(20);
(5) ¢ (y) > u(y) (¢ (y) <u(y)) for every y € By (zo) \ {zo}:

then, if we let

in R"\ B, (xp),
we have Tv (zg) > f(zo) ({v (z9) < f (20)).

y :_{ ¢, in B (x0)
u

Remark 2.4. Functions which are C%! at a contact point = can be used as
test functions in the definition of viscosity solution (see Lemma 4.3 in [4]).

Next, we define the class of linear integro-differential operators that will
be a fundamental tool for the regularity analysis. Let Ly be the collection
of linear operators L,3. We define the maximal and minimal operator with
respect to Ly as

M™Tu(x) := sup Lu(x)
LeLly
and

By definition, if M*u(x) < co and M~ u(x) < oo, we have the simple
form

AST — N6~
M (z) =cy o nto, Y
Rn Zi:1 ‘yz‘ ’
and AT — A6™
M u(z)=c _

=T dy.
7 Jrn 2oiy lyinte

Remark 2.5. As in [4], we could consider equation (|I.1)) for a more general
class L satisfying

/ s 5K (y) dy < oo,
rn 1+ [y

where K (y) := sug K, (y) and K, (y) = Ko (—y).
ac
The proofs of the results that we now present can be found in the sections
3,4 and 5 of [4]. The first result ensures that if u can be touched from above,
at a point x, with a paraboloid then Iu (z) can be evaluated classically.

Lemma 2.6. If we have a subsolution, Iu > f in Q, and ¢ is a C? function
that touches u from above at a point x € , then Iu(x) is defined in the
classical sense and ITu (z) > f(x).

Another important property of I is the continuity of I¢ in Q if ¢ €
chL ().

Lemma 2.7. Let v be a bounded function in R™ and C1' in some open set
Q. Then Iv is continuous in Q.
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The next lemma allows us to conclude that the difference between a sub-
solution of the maximal operator M and a supersolution of the minimal
operator M~ is a subsolution of the maximal operator.

Lemma 2.8. Let Q) be a bounded open set and w and v be two bounded
functions in R™ such that

(1) w is upper-semicontinuous and v is lower-semicontinuous in Q;

(2) Iu > f and Iv < g in the viscosity sense in § for two continuous

functions f and g.
Then
Mt (u—v)>f—g in Q

in the viscosity sense.

We conclude this section introducing some notation that will be instru-
mental in the sequel. Given r;s > 0 and = € R", we will denote

_ S
Er,s(x) T (yla--',yn)GR Z 2 <s

=1 rnted
and
L1
R, (z) = {(yl, oo yn) € R 1y — @i < s7Fomin } )

Given the box R.. ., we define the corresponding box Rr,s by

T,8)

1
Rr,s (l‘) = {(y17-'~7yn) e R": Iyz - x@, < (ST’)"*%‘ } .

If opin := min{o1,...,0,} we define
Gmin = Min{j : Omin = 0} .
Remark 2.9. Let r > 0. Hereafter, we will use the following relations:
(1) Er,% CO,C ET,\/H;
(2) ©3-¢, C E_,, for some natural number € = € (n) > 0;

'8

(3) R,y CR,,,if0<s<1.

3. NONLOCAL ANISOTROPIC ABP ESTIMATE

Let w be a non positive function outside the ball B;. We define the
concave envelope of u by

min {p (x) : for all planes p > v in B3}, in Bj
I'(z):=
0 in R\ Bs.
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Lemma 3.1. Let u <0 in R™\ By and T" be its concave envelope. Suppose
M™*u (z) > —f (x) in By. Let pg = po (n) >0,

TE = [)02_qmi2_€(n'i'o'min)k7
where ; :
;= —1
e +n+oi+§n—|—aj
JF#

and Gmax = max{qi,...,qn}t. Given M > 0, we define
Wi (%) := Oy \ Opy N
Ny:u(z+y) <u(x)+(y, VI (z)) =M  inf  (Azz2)p,
2€0r \Or;
where the matriz A = (ai;) s defined by
1, if 1 =7 =1min

)0, if iF]

aij :

2<_ n+olmin+n+10j)qn?ax . L .
, if 1 =7 % imin-

Then there exists a constant Cy > 0, depending only on n, A (but not o;),
such that, for any x € {u =T} and any M > 0, there is a k such that

W) <ol e, e

Proof. Notice that u is touched by the plane
I'(z) + (y — 2, VI (2))

from above at z. Then, from Lemma M () is defined classically and
we have

(3.1)

Tk+1 ‘ .

AST — N6~

MTu(z) =c =————dy.
7 Jrn iy il

(3.2)

We will show that

5 (y) =0 (wzy)=u(@+y) +u(z—y)—2u(z)<0. (3.3)
In fact, if both x — y € B3 and x + y € B3 then we conclude that ¢ (y) <0,
since u (z) = I'(x) = p(x), for some plane p that remains above u in the
whole ball Bs. Moreover, if either x —y ¢ B3 or x +y ¢ Bs, then both
x —y and x + y are not in By, and thus u(x +y) < 0 and u(x —y) < 0.
Therefore, in any case the inequality (3.3]) is proved. Combining (3.2)) and
(3.3)), we find

—f(x) £ MTu(z)
A6~

= c = s W
7 Jon, 2oica lyilm o

(3.4)
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where ry = p02_$. Since = € {u =T}, we would like to emphasize that
y € Wi () implies —y € Wy, (x). Thus, we find

Wi () C Op, \ Op ) N {y :=0(y) >2M inf <Az,z>} . (3.5)

zE@Tk\Grk+1

Using (3.4)), we estimate

5
f(x) > c(n,A) [ch/ Widy]

Tk\QTkH
> c¢(n, A)Z [Cgrkl/ 5_dy} (3.6)
k=1 Wi

Let us assume by contradiction that (3.1]) is not valid. Then, using (3.5
and (3.6)), we obtain

F@) = c(m) [caz (m() 22‘))

k=1 i=1

COf (‘T) rk;_l ‘erk \ C_)’I‘k-;_ll
M

_ 2(n+omm n
2 n+o; I |
n o

= 271,00 f () [cg 2_¢(”+"mi“)‘”k>] )
i=1 \k=1

(2

3

o
> 610of (2) | co2 o) i 3
k=1 1=1

Then, we get

3

f(x)

Y

C3COf [ Co Z 2~ @ n+0'mm)(h )]
=1 =1

n

= aCof (@)Y

=1
c3Coco f (2)
- 1 _ 2*¢(n+0min)cg ’

Co
1 — 2—€(n+0min)gi

Co

g e s is bounded away from zero, for all o; € (0,2),

Finally, since :
we find

f(@) = ca(n,A)Cof (x),
which is a contradiction if Cy is chosen large enough. (]
Remark 3.2. In the proof of Lemma |3.1| we have used the matrix A := (a;;)
to control the term Q_mi, which can degenerate. This term corresponds

1
to the factor 27 2=7 in the isotropic nonlocal ABP estimate in [4]. We also
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emphasise that the matrix A is diagonal, has norm one and, if o; = o, we
obtain the matrix for the isotropic case A = Id.

The following result is a direct consequence of the arguments used in the
proof of [4, Lemma 8.4].

Lemma 3.3. Let I' be a concave function in By and v € R™. Assume that,
for a small e > 0,

(BI\By) N{y:T(y) <T(O)+(T).v) —h}| < |Bi\ B,
where T : R™ — R" is a linear map. Then
I'(y) 2T0)+(T(y),v) —h

Y

in the whole ball B%.

Proof. Let y € Bi. There exist B1 (y1) C B1\ Byj2 and Bi (y2) C B1\ By o
2 2 2
such that
L(By () = By (v2).

where L : B1 (y1) — Bi (y2) is the linear map
2

%
L(z)=2y—z.

Geometrically, the balls B 1 (y1) and B 1 (y2) are symmetrical with respect to

y. Then, if € > 0 is sufficiently small, there will be two points z; € B 1 (y1)

and 29 € B% (y2) such that

(1) y= %;
(2) T'(21) 2T (0) + (T (21) ,v) — I
(3) T'(22) >T(0) + (T (22),v) — h

Hence, since T' and (-,v) are linear maps and I' is a concave function, we
obtain

I['(y) >T(0)+(T(y),v) — h.
0

Using Lemma we will prove the version of Lemma 8.4 in [4] for our
problem.

Lemma 3.4. Let r > 0 and I' be a concave function in E_ 1. There ewists
2
go > 0 such that if

B\, 0{y:T(y) <T(0) +(y, VT (0)) - h}| < |,

for 0 < e < e, then

N

['(y) > T(0) + (y, VL' (0)) — h

in the whole set K 1.
4
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Proof. Let T : R® — R” be the linear map defined by

1
r n+ai
Tei = 9 €,

where e; denotes the i-th vector of the canonical basis of R™. If

A= (Bl\B%)ﬂ{y:f(y) <f(0)+<T(y),vr(0)>_h}

and
D= B,y \E,y 0 {y:T(y) <T(0)+ {5, VI (0)) — b},
we have
A=T7YD),
where T (z) := I' (T (z)). Moreover,

_ -1 =1
Bi\By =T (B, \E,1) and By =T (E,,).
Then, taking into account that [ is concave, the lemma follows from Lemma
3.3 O
Corollary 3.5. Let g > 0 be as in Lemma|3.4, Given 0 < ¢ < gg, there
exists a constant C (n,\,e) > 0 such that for any function u satisfying
1
the same hypothesis as in Lemma there exist r € (O,p02_m> and

k =k (z) such that

er\@”n{y:“(“y) <“<I>+<9,VP<:¢>>—Cf(x)ZT"E”}

i=1
<16, \ Og| (3.7)

and

)VF <Ra’sk+l (:C)>’ <Cf (w)n ‘Rmsk-!—l (x)’ )
where r = ,002_@2_@(”*’““)]“, a= pOQ_ﬁ and s = 2~ ¢(n+omin)

Proof. Taking M = %f () in Lemma we obtain (3.7) with O := <o,

&

Moreover, since u(z) = I'(z) and u(x +y) < T'(x+y), for y € E 1, we
’2

have
ET1\ET1ﬂ{y T'(z+y) <u(z)+ (y, VI (z)) — C1f (x) inf <Az,z>}
) ' 4 ZE@T\®ST
C W, (z)
where

W, (z) := 0, \ Og4N

ﬁ{y:u(az+y) <u(az)—f—<y,VI’(1:)>—C’lf(ﬂ:)zE inf <Az,z>}.

ka sTr

Then, from Lemma and the concavity of I, we find
0< F(y) <2C inf  (Az,2) i E..,
< F(y) <201 f () zeén\@ (Az,z) in !

T ST
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where

F@%:F@+y%41@—%%VF@»+CJ@ﬂ%$g”M%@-

Notice that
VF(x+y)=VIl(zx+y)— VI (2).

Then, since F' is concave, we obtain

F
¥l
dmt(ﬁgé,ﬁgé)

Cif (x) Ze@i)n\f@ (Az, z)

dist (E, 1, E, 1)
74 78

IV (z +y) — VI (z)] <

IN

1
< Cof (x) r*Fomin,
Thus, we have

) cB L (VI (2))

C’Qf(:n)'r n+omin
and obtain

1
'8

\vr(Rmﬁ+ng)vr(Ew )‘S(kf(xW’Rmﬁ+ﬂ.
Finally, taking C' = max {C1, C3}, the lemma is proven. O

The following covering lemma is a fundamental tool in our analysis.

Lemma 3.6 (Covering Lemma, [0, Lemma 3]). Let S be a bounded subset of
R™ such that for each x € S there exists an n-dimensional rectangle R (z),
centered at x, such that:

e the edges of R (x) are parallel to the coordinate azes;
e the length of the edge of R (x) corresponding to the i-th axis is given

by h; (t), where t = t(x), h;(t) is an increasing function of the
parameter t > 0, continuous at t =0, and h; (0) = 0.

Then there exist points {xy} in S such that
(1) 5 C Uz R (w);
(2) each x € S belongs to at most C = C (n) > 0 different rectangles.

The Corollary 3.5 and the Covering Lemma [3.6] allow us to obtain a lower
bound on the volume of the union of the level sets ©,. where I' and u detach
quadratically from the corresponding tangent planes to I" by the volume of
the image of the gradient map, as in the standard ABP estimate.
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Corollary 3.7. For each © € X, let O, (x) be the level set obtained in
Corollary[3.5. Then, we have

C (supu)” <

U e (@)

TEX

The nonlocal anisotropic version of the ABP estimate now reads as fol-
lows.

Theorem 3.8. Let u and ' be as in Lemma 3.1 There is a finite family
of open rectangles {R;} with diameters d; such that the following
hold:

(1) Any two rectangles R; and R; in the family do not intersect.
(2) {u=T} UL R;.
(3) {u=T}NR; #0 for any R;.

je{l,...,m}

n 1 2
4) d; < 2 amax ) T,
(1) dj <3 (po2 ")
(5) |VT (R))| < € (maxg, £+)"[Ry].

(6) Hy €CR; u(y)>T(y)—C <maxﬁj f) (CZJ-)QH > ¢ (ﬁj‘,

where Jj is the diameter of the rectangle 7~€j corresponding to R;. The
constants ¢ > 0 and C > 0 depend only on n, A and A.

Proof. We cover the ball By with a tiling of rectangles of edges

A
(POT‘“IK) e
2-¢C
We discard all those that do not intersect {u =TI'}. Whenever a rectangle
does mnot satisfy (5) and (6), we split its edges by 2"¢ and discard those
whose closure does not intersect {u = I'}. Now we prove that all remaining
rectangles satisfy (5) and (6) and that this process stops after a finite number
of steps.
As in [4] we will argue by contradiction. Suppose the process is infinite.
Thus, there is a sequence of nested rectangles R; such that the intersection
of their closures will be a point xg. Moreover, since

{u=T}NR; #0

and {u =TI'} is closed, we have g € {u =T'}. Let 0 < €1 < €9, where ¢g is
as in Lemma [3.5] Then, there exist

1
r e (0, p02" )
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and ko = ko (z¢) such that

i=1

@r\@srﬁ{yiu(ﬂf+y) <U(l’)+<y,vr(l‘)>—Cf([L‘)ZT"fUi}

<c10,\ 0, (3.8)

and

; (3.9)

VT (B, s (@0))| < CF (@0)" | B, i1 (20)

where
1
r = p02_ gdmax 2—@(1’L+0’min)k0 .

Let R; be the largest rectangle in the family containing xp and contained
n R (x0). Then g € R; and R; has edges [; satisfying

1 1
gmetor? (pofﬁ) <] < 9ot (pquml“)H”i .
Thus, we get
Rj C Ra Sk0+1 and 67“ C CRJ,
for some C' = C' (n) > 1. Furthermore, since I' is concave in Bs, we find
I'(y) < u(zo) + {y — w0, VI (20))
in Bs. Thus, denoting

~ ~\ 2
Aj = {yGCRj¢U(y) >I'(y)-C (maXf) (dj> }
R.

J

1

1 nto.
using (3.8)), (3.9) and that I; and s~*o (p02_m> "7 are comparable, we
obtain

4 = |{ye Ry uly) = ulwo) + (y — 0, VT (20))

—Cf (a0) Zr}‘

=1

(1—¢€1)]0;\ O
<‘7€j‘

v

v

and

VIR < |V (R, o (w0))|
Cf (@0)" |B, o1 (w0)|
C1f (z0)" [R;].

Then R; would not be split and the process must stop, which is a contra-
diction. (]

IN
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4. A BARRIER FUNCTION

With the aim of localising the contact set of a solution u of the maximal
equation, as in Lemma [3.1] we build a barrier function which is a supersolu-
tion of the minimal equation outside a small ellipse and is positive outside
a large ellipse.

Lemma 4.1. Given R > 1, there exist p > 0 and o € (0,2) such that the
function

f () = min (2p, ]:U|_p)
satisfies
M~ f(x) >0,
for oo < omin and 1 < |z| < R, where p =p (n,\, A\, R), 09 = op (n, \, A, R).

Proof. In the sequel we will use the following elementary inequalities:

(ag +a1)~* 4 (ag —a1)~° > 2a5° + s (s + 1) atay* 2 (4.1)
and
(az+a1)° >a5® <1 — sa1> ) (4.2)
as

where 0 < a1 < ag and s > 0. Taking into account the inequalities (4.1)) and
[42), we estimate, for |y| < 3,

6(f7 elvy) = ’61 + y’—p + ‘61 - y|—p -2
2 -z 2
(T+yP+2y1) %+ (1+|y]* —2u1)

_p
2

-2

_p _pta
> (1+y?) 2+p+2)yi(1+y*) 2 -2
P p+2
> 2(1—2|yl2>+p(p+2)2yf—p(p+4)( : 2y —2
p+2
= p[—\y|2+(p+2)y%—(p+4)( 5 )yf\ylz]-

Given 1 < |z| < R, there is a rotation 7, : R” — R" such that x = |z|Te;.
Thus, changing variables, we get

M_f (SU) — Cg|x\"_p|deth| |:/ )\5+ (faelvy) — Ao~ (fa elvy)dy:| )

w2 (2] Tey); [P
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Then, we estimate

B R e e
B1,4(0) Zi:l ||| (Twy)i |t

te / AS*H (fren,y) = A5~ (fe1,y)
T Jen a0 i 7] (Tey); [

C/ 2pA (p +2) i

7 B, o) 2o 2] (Toy), [0

_C/ 2pAlyl? ay
7 By, 40 i ] (Ty),; [

» / p(p+4)(p+2)yl*
By Loie N2l (Tey), [+

dy

Y

/ _)\2]3—‘,-1 d

+c —~ay

7 e\ By a(0) i 2] (Toy); 4]

= Il+12—|—[3+]4, (43)

where 11, Io, I3 and I represent the three terms on the right-hand side of
the above inequality.
We estimate

2

-1 -1 —(n+2) Y1
p i > n e (p+2) |z / —_—
y By 4(0) Y[ omin

v

6/4
R*(n+2)n71 |:Ca)\ (p + 2)/ y%dy (y):| / 1= omin gt
0B1 0

CO' 1 2_o'min
e+ [ st (5)
— Omin 0B1

> (Csc(n) [(p-l-?) /8 N yidv (y)},

where C3 = C3 (n,A\,A, R) > 0. Moreover, if C = C(n) > 0 is a positive
constant such that By, (0) C O¢, we have, for |z > 1,

v

2
-1 |y
p I > —040/ -dy
7By ) 2ier | (Toy); [P

T

B1ya(0) 2ic |9il" 7

ly|?
= _040/ = oy
’ By /4(0) Z?:1|yi|n+al

[yl y
Oc Duiet [ya[" o

= —Cuc, |det T, |

> —Cycy
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where Cy = Cy (n, A\, A). We have also

Co Ui =i g W = CJZ/ L*dy < (5,
oc it Uil O \Org sy 2uim1 [Yil" T

where 71, := C27% and C5 = C5 (n, A\, A). Moreover, using the elementary
inequality

(a+0)™ < 2™ (a™ +0v™), forall, a,b,m € (0,00),

we get

4
I3 > —Cgcs2 +2max/ ﬁ%dy
Bs;4(0) |yt oma

70 Co 1 4—0omax (4 4)
"(4 = omax) \4 ‘

1 ) —Omax+0min n+omin / A2p+2
e (! g 5in 2
7 (4 R1\B, 4 (0) [y["Fmin
—Omax
_ _08 (1) 9 +2m1n Co
4 Omin

Z _CB (i) Co ; (45)

Omin

and

1y

v

for positive constants C7 = C7 (n, A\, A, p) and Cg = Cs (n, A\, A, p). Choosing
p=p(n,\, A, R) > 0 such that

Cs(p+ 2)/ y%du (y) — C4C5 >0
0B,

and combining (4.3), (4.4) and (4.5), there is a positive constant oy =
oo (n, A\, A, R) < 2 such that

|zP" M~ f (x) > Cy > 0,
for a positive constant Cg = Cy (n, \, A, R) and 0¢ < opmin < 2. O

Corollary 4.2. Givenr > 0, g € (0,2), 09 < Omin, and R > 1, there exist
s >0 and p > 0 such that the function

f(z) = min (s7P, [z[7P)
satisfies
M~ f(x)>0
for 1 < |z| <R, where p=p(n,\,A,R) and s = s(n, A\, A, 09, R).

Proof. Since ¢, > ¢(n) (2 — omin) and

Cor |y!2 =c Z —’y‘z dy < C (n)
o S e Y T e =

Tk \erk+1
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if C = C(n) > 0and ry := C27%, we can argue as in Corollary 9.2 in [4]. O

Corollary 4.3. Givenr >0, R > 1 and oy € (0,2), there exist s > 0 and
p > 0 such that the function

g () = min (s77, [T,7[7P)
satisfies
M~g(x) >0

for o9 < omin and x € E, g\ E.1, where p = p(n,\,A,R) and s =
s(n,\ A o0, R).

Proof. Considering the anisotropic scaling
g(@)=f(T7'z), zeR",

we have T, ' (E, g \ E,1) = Bg \ B,. Furthermore, changing variables, we
estimate

M~g(z)=r"'|detT,|M~ f (T, z) >0,
forall x € E, g\ Ey 1. O

Lemma 4.4. Given og € (0,2), there is a function ¥ : R™ — R satisfying

(1) W is continuous in R™;
(2) ¥ =0 forx GRR\E%W"

(3) ¥ >3 forxe Ri73,'

(4) M~¥ (z) > —¢(x) for some positive function ¢ € Cp (Ei1> for

00 < Omin-

Proof. We define the function ¥ : R™ — R by

0, in R"\ Ei; .~
. ~1 - -
U (r)=2¢ |Ti [P — (3y/n)? in E%’?"/E\E%’l
dp,o 5 in FEi 19

where ¢, » is a quadratic function with different coefficients in different di-
rections so that ¥ is C1! across E: 1- Choose ¢ > 0 such that ¥ > 3 in
47

R%,?f By Lemma

MY eC (B, )

and, from Corollary we get M~V¥ > 0 in R” \ F1,. The lemma is
1
proved. O
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5. HARNACK INEQUALITY AND REGULARITY

The next lemma is the fundamental tool towards the proof of the Harnack
inequality. It bridges the gap between a pointwise estimate and an estimate
in measure.

Lemma 5.1. Let 0 < 09 < 2. If omin € (00,2), then there exist constants
gg>0,0<¢ <1, and M > 1, depending only oo, X\, A and n, such that if

(1) w>0in R
(2) u(0) <1
(3) M~u<e¢gpin EM ¥
then b
{u < M}NQi]>s.

Proof. Let v =W —u and let ' be the concave envelope of v in E(gﬁ)wz

4 ’3
We have

Mfo>M U —M u>—¢— in F n
v > u>—¢p—¢gy in (s \/774) +2 .
Applying Theorem to v (anisotropically scaled), we obtain a family of

rectangles R; such that

n

5 sup v<C ’VF <E(3\/E4)n+2’1>

3\/ﬁ)n+2
e

Thus, by Theorem (3.8 and condition (3) in Lemma we obtain

,1

1

n

sup v < C ‘VF <E(3ﬁ)n+271>

P (aymt2 i
— 4l

) (Zwr ww) "

<
i=1
< G (Z <n713x (¢+€0)+> |Rj\>
i=1 J
< Cieo+ (Z <H71za (¢)+> ‘RJ|> :
i=1 J

Furthermore, since ¥ > 3 in E(3ﬁ)n+2 )
4 b

2 < Cieg + <Z (II;?X (¢)+> ’RJ‘) " :

D Riv?’ and u (0) < 1, we get

i=1 J
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If g > 0 is small enough, we have

c< >R, (5.1)

R QE% Ylsﬁm
where we used that ¢ is supported in E1 ;. We also have that the diameter of
4 b

1 -
R; is bounded by (pg = %) 7+2_ Then, if R;NE1 ; # 0 we have CR; C Bi.
47 2
By Theorem [3.8] we get

{yeC?éj :v(y)zf(y)—CpéjQ}'

Hy € C7~€j cv(y) >T(y) —Cd?}‘
SR, (5.2)

v

Vv

2
where we used that Cd? < Cp{*?. For each rectangles R; that intersects

E 1, we consider C’7€j. The family {C?éj} is an open covering for |J;", ﬁj.
We consider a subcover with finite overlapping (Lemma|3.6]) that also covers

U, Rj. Then, using (5.1]) and (5.2]) we obtain

HyEBé :“(y)ZT(y)—CpéiQH

m

~ _2
> |Ufvecrvmzrm- oo}
j=1
mn _ 2
> oY |{vecrivm =T - o |
j=1
2 0161.

2

We recall that B1 C Q1 and I' > 0. Hence, if M :=sup ¥ + Cpj*?, we have
2 B1

2

{yeQi:u(y) <M} > HyGB%:U(y)SMH
= {yEBéiv(y)ZF(y)—C%jZ}‘
> cC.

O

The next lemma is crucial to iterate Lemma and to obtain the L.
decay of the distribution function A, := |[{u >t} N B;|. Since our scaling
is anisotropic, the following Calderén-Zygmund decomposition is performed
with boxes that satisfy the covering lemma of Caffarelli-Calderén (Lemma
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3.6). We can then apply Lebesgue’s differentiation theorem having these
boxes as a differentiation basis.

If R is a dyadic rectangle different from 1, we say that R,..q is the
predecessor of R if R is one of the 2" rectangles obtained from dividing
Rpreq. We recall from section |3[ that if R is a rectangle then R is the
rectangle corresponding to R.

Lemma 5.2 (Calderén-Zygmund). Let A C B C Q1 be measurable sets and
0 < d <1 be such that

(1) [A] < 6;
(2) if R is a dyadic rectangle such that ‘A N R‘ >4 ‘R‘, then Rpred C B.

Then
|Al <oC B,

where C' > 0 is a constant depending only on n.

Proof. Just as in [B, Lemma 4.2.], using Lebesgue’s differentiation theorem,
we obtain a sequence of boxes R; satisfying

(1) [ANR;| < d|R;l;
(2) AC U;)il Rj.
Then, we have

00 00
Al <Y JANR <6 |Ry| < C§ 1B,
j=1 J=1
where C' = C (n) > 0 is the constant from Lemma [3.6] O
Lemma 5.3. Let u be as in Lemmalid. Then
Hu>Mk}ﬁQ1’ <Ccl-9F, k=1,...,
where M and ¢ are as in Lemma |5.1l Thus, there exist positive universal
constants d and € such that
[{u>t}NQi| <dt™s, Vt>O0.
Using standard covering arguments we get the following theorem.

Theorem 5.4. Let u > 0 in R™, u(0) <1 and M~ u < gy in Ba. Suppose
that omin > og for some oo > 0. Then

[{u>t}N B <Ct™¢, Vt>0,
where C = C (n,\,A,00) >0 and e = (n, \,A,00) > 0.

Remark 5.5. For each s > 0, we will denote E{S = Ern+aj o Let © > 0 in

R™ and M~ u < Cj in Eﬁg, with 0 < r» < 1. We consider the anisotropic
scaling
u (Tjrx)

v(x) =

, reR",

n—1 nton

w0+ ol ]
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where T}, : R" — R" is defined by
rej, for i=j
Tyer= 1 b L
rrtoie;,  for i # j.

We have v > 0 in R", v (0) < 1 and T}, (B2) C EﬁQ Moreover, changing
variables, we estimate

n—1 n+°’j
iy [(n—l) =iy nto; ]

M v(z) =

M~ u(Tj,x) <1,

n—1"n"to;

u (0) + C'm“[(nil)iziz1 nto; ] roi

for all z € Bs.

Then, using the anisotropic scaling 7T}, and Theorem we have the
following scaled version.

Theorem 5.6 (Pointwise Estimate). Let u > 0 in R™ and M~ u < Cj in
Eﬁ’2. Suppose that omin > og for some og > 0. Then

n—1 n“'f"j

3
[{u>t}nE,| < ClE],]| (u (0) + Cor {(n_l)_z"d "+"i]r0j) ¢ VE>0

where C = C (n,\,A,00) >0 and e =€ (n,\,A,00) > 0.
We are now ready to prove the Harnack inequality.

Theorem 5.7 (Harnack Inequality). Let u > 0 in R™, M~ u < Cy, and
M*u > —Cy in By. Suppose that omin > 09, for some oo > 0. Then

u<C(u(0)+Cy) in B%.

Proof. Without loss of generality, we can suppose that « (0) < 1 and Cy = 1.
Let
~ n(n+ omax)

a g (n + Umin)
where € > 0 is as in Theorem [5.4] For each ¥ > 0, we define the function
fo(x) =01 —|z|)"", z€B.

Let ¢ > 0 be such that v < f; in By. There is an zg € Bj such that
u(zo) = fi (z0). Let d:= (1 — |zo|) be the distance from z¢ to 9B;.
If Omax = i, and B (z0) = E)% (20), for all s > 0, we will esti-

mate the portion of the ellipsoid Eff™ (zp) covered by {u > @} and by

)

{u < @} As in [4], we will prove that ¢ > 0 cannot be too large. Thus,

2
since 7 < —n, we conclude the proof of the theorem. By Theorem |5.4] we

{us "M om|<c

have
13

2

u (z0)

n+omax \ 1
2 g Ct_€dn S Clt—g <,r n+0min ) ,
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where r = %. Thus, we get
Hu > 20 f‘” } N B3 ()

Now we will estimate Hu > @} N E (o)

< Oyt | B (5.3)

, where 0 < 6 < 1. Since

|3§'|§|QZ’—LEO|+|QZ‘0|, VI‘ERTL,

(-lah = [a- G,

we have

for x € By (x9). Hence, if x € B,y (x), we get

w(z) < fo(@) <t (- [e) < uxo) (1—2) |

Then, since M Tu > —1, the function

v (z) = (1—§>_Tu(xo)—u(x)

satisfies
v>0 in Brg(xg) and M v <1,
We will consider the function w := vt. For z € R® we have

M w(z) =M v(z)+ (M w(z)— M v(z))

and
Miw(x)_Mi,U ($) Y 6+ (waxay)_(SJr (U7$7y)dy
Co Rn Doy lyantoi
0 (v,z,y) — 0~ (w,z,vy)
+A 0 : dy
Rn > i lyiln o
= I+ Iy,

where I; and I represent the two terms in the right-hand side above. Using
the elementary equality

vt (@+y)=v(e+y) +v (z+vy),
and denoting d,, := J (w,z,y) and &, := I (v, z,y), we obtain
Sh=0p+v (x—y)+v (z+y).
Thus, taking in account that

55 >6" and &, =06 — 3y,
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we estimate

Oy
= /{a$>a:} 2 i lyilm e w
+A/ v‘($+y)+v‘(x—y)dy
{s5>51} >y |yl
< A/ v‘(:c—i—y)—l—v_(x—y)dy'
T Jersoy i vl

Analogously, we get

L = A / gy
{60 >0}n{su#s, } et il
A/ v (z+y)+uv (z—y)
{57=0}n{6a#5;} > ey lyilnte
< A/ ;5”—_511
{57 >0 n{om o} Doimt [Yil" T

dy.

We also have

=0, =0, = )= (v(@+y) +v(z—y) -0,
z) = [(v" (z +y) + 0T (2 —y))
(v @ty +v (z—y))]
= (“0w—10y)+v (z+y) +v (z—y)

= Oyt (ﬂf+y)+v (z—y).
Then, from ([5.6)) and ([5.5)), we obtain

2u(
2u(

+
I, < —A/ né—wwdy
{65 >0}n{6u#6 } D i1 lyi
A/ v (e t+y)to (z—y)
{5, >0} {66, } i |yl

< A/ v (v +ny) + v;@ - y)dy‘
{su>0} Doy ys|ntei

Hence, using (5.4)), (5.7), and changing variables, we find

M~ w(z) — M~ v (x) A v (zt+y)+u (z—y)
Co = Jme > i lyil e

= —2A |TL+0'7;

{(v(+y)<0} Doiz1 Vi

dy

dy

v(x+y)

25
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Moreover, if z € Bro (xg), we have
2

M7w (@) = M7v(@) o _—v(zty)
Co a R™\Bpg(xo—1) E?:l |ys|tei
., +
(s +9)— (1= " ute)
<2A _ o dy.
R™\B.p(x0—2) > it it

If ¢ > 0 is the largest value such that u(z) > ¢ (1 — |[4z|?), then there is a
point x; € Bi such that u (z1) = (1 — |[4z1]?). Moreover, since u (0) < 1,
we get ¢+ < 1. Then, we have

5~ 5~ ((1— [4z|?) , z1,
Cor Tl(u’—%d S Co’/ (( _ ‘ -7;| 71)+0_:E_1 y) dy S C,
rRe D i1 |Yil ¢ n > i1 |Yil ‘

where the constant C' > 0 is independent of ;. Moreover, since M ~u (z1) <
1, we find

+
c 0" (w,z1,9) dy < C.

7 Jre Doy lyilr e T
Recall that u (x1 —y) > 0 and u (1) < 1. Thus, we obtain
(u(z1+y)—2)"
c dy < C.
7 / >ic [l
Since t > 0 is large enough, we can suppose that u (xg) > 2. Let

x € BN (x) C B%o (x0)

0
ool

and
y € R"\ Byg (zg —z) CR"\ B (0 — ).

r60
21

Then, we have the inequalities

n
S Iy +a+ ), "
=1

n n n
SR PR SEEED ENED)
=1 =1 =1
n
< O |yl™ti 420
i=1
and
il = [y = (xo —2)); [ = [ (xo — ),
n+omax
(rg) ntei

- 2
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Then, taking into account the obvious equalities

w(e +y) — (1—6>_Tu(xo):u(x+ﬂc1+y—aj1)— <1—0>_7u(x0),

2 2
and
—1
1 ~ n |ntoi
e OIPRE AN S AR k)

we estimate
+

N
R\ B, o (z0—2) D iy lyilmte

Thus, we have

dy < C (0?")_(”+Uma") )

M~w < Cy (fr)~(Home) iy pmax ()

0
ol

Applying Theorem to w in B (x0) C Bre (9 — ) and using that
2

5ol

w (z0) = ((1— g)_7—1> neny

we get
o> "5 oy
_ {w > [(1 _ Z>_ _ ;] u(:ro)} n B
< O|Ew [((1 - Z) o ;) u(zo) + Ch (r@)‘"—02] E
((-5)7=5)w]
< olegy] [((1-5) "= 3w+ crore]
((1 _ g>_ _ ;) " (xo)] - (5.8)
where
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and where we have used that 0 < Cy < Cy (n). Thus, using (5.8)) and the
elementary inequalities

[((1 _ g) o ;) u (o) + Ci (7’6)0(”)] 6

and

for 6 > 0 sufficiently small, and yet

cae—cmkr—cmﬁu(xw_e<<l“g>_7“;>

< O49—C(n)aT—C(n)au (-73(])_6 < 059—C(n)at—adn[lfés] < 060_081;_6,

we obtain
g
0 —T
us WL s <clems||((1-35) —1) v
2 203 202 2

Now we choose 6 > 0 sufficiently small such that

N i §
i 1-=) -1 < O‘ ol [{1—5 —1
C} 73 [( 2> ] = 73 [( 2) ]
1
< ETaX .
= 4’ et

Having fixed 6 > 0 (independently of t), we take ¢t > 0 sufficiently large such
that

C r&a}i Q—Cet—a < 1) iniai )
22 4 22

Then, using (5.8]), we find

> 1L 0 | < 1|
2 22 41 23

Hence, we have, for £ > 0 large,

ulx 1 n—1 ntomax
w< LI | IS ) e
2 2032 '
2 C2 ‘ 71'1711ax )
which is a contradiction to (5.3]). [l

As a consequence of the Harnack inequality we obtain the C7 regularity.
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Theorem 5.8 (C7 estimates). Let u be a bounded function such that
M u<Cy and MTu>—Cy in B;.

If (0,2) 2 09 < Omin, then there is a positive constant 0 < v < 1, that
depends only n, A, A and oo, such that u € C7 (31/2) and

Moo <€ (s o).

for some constant C > 0.

The next result is a consequence of the arguments used in [4] and Theorem
As in [4], if we suppose a modulus of continuity of K,z in measure, so
as to make sure that faraway oscillations tend to cancel out, we obtain the
interior C17 regularity for solutions of equation Iu = 0.

Theorem 5.9 (O estimates). Suppose that 0 < 0o < omin. There evists
a constant g > 0, that depends only on X\, A, n and oq, such that

Ka - Ka —h
/ [ Kas (y) (y—h) ’dy < Cy, whenever |h| < oy
- A ’

If u is a bounded function satisfying Iu = 0 in By, then there is a constant
0 <~ < 1, that depends only n, A, A and oq, such that u € C17 (Bl/g) and

tlera(p,2) < Csuplul
for some constant C = C (n, A\, A, 09, Cp) > 0.

Remark 5.10. We can also get C7 and O estimates for truncated kernels,
i.e., kernels that satisfy only in a neighborhood of the origin. Let £
be the class of operators L,z such that the corresponding kernels K,z have
the form

Kap (y) = Kap1 (y) + Kag2 (y) >0,

where
ACy Ac

e < Kap (9) € e
Syt = P Syl

and Kago € L' (R") with | Kap2llL1®n) < co, for some constant ¢o > 0.
The class £ is larger than Ly but the extremal operators M, and MZ are
controlled by M and M~ plus the L> norm of u (see Lemma 14.1 and
Corollary 14.2 in [4]). Thus the interior C7 and C! regularity follow.
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