Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/30813
Title: | Automatic sleep staging based on classifícation methods | Authors: | Machado, Fátima | Orientador: | Teixeira, César | Keywords: | Engenharia biomédica; Ciências da Saúde; Tecnologia; Sono; Estados; Classificação; Algoritmo | Issue Date: | Oct-2015 | Citation: | Machado, Fátima / Automatic sleep staging based on classifícation methods | metadata.degois.publication.location: | Coimbra | Abstract: | During the sleep the brain generates different types of waves depending on the
brain stage. To characterise these brain states, the two structures exist: the
macrostructure and microstructure. The macrostructure is composed by five sleep
stages (designated by N3, N2, N1, REM, W) whose classification is based on the
present wave types. The microstructure is characterised by transitional states and
the Cyclic Alternating Pattern (CAP) is an example of it. CAP is a periodic
cerebral activity prevalent during NREM sleep-stage and composed by A-phases
(A1, A2 or A3) and B-phases.
The visual scoring of macro- and microstructure are important elements for the
diagnosis and prognosis of some diseases. Although this task of both is a time
consuming process, which demands automatic scoring.
This thesis proposes different classifications methods (discriminate classifiers, kNN and SVM) to detect automatically the sleep stages and A-phases. The classifiers are validated with a dataset that comprise 30 patients. For sleep stages the
better model is SVM which obtained an accuracy off 72%, the sensitivities for the
each sleep stage are 62%, 54%, 73%, 83% and 69% for W, N1, N2, N3 and REM
stages. Regarding the CAP staging the best classifier method is also SVM with an
accuracy of 71%, the sensitivities are 76%, 58%, 44% and 24% for B, A1, A2 and
A3, respectively. The prediction of A-phases with the SVM yield the best results to date. Durante o sono o c´erebro gera diferentes tipos de ondas, dependo do estado em que se encontra. Para caracterizar estes estados cerebrais existem duas estruturas: a macroestrutura e microestrutura. A macroestrutura ´e composta por cinco diferentes estados de sono (designados por N3, N2, N1, REM, W), cuja classifica¸c˜ao ´e baseada de acordo com o tipo de onda gerado. A microestrutura ´e caracterizada por estados transicionais, sendo um exemplo o Padr˜ao C´ıclico Alternante (CAP). O CAP ´e uma actividade cerebral peri´odica prevalente durando o estado de sono NREM e composto por fases A (A1, A2 e A3) e fases B. O estadiamento visual da macro e microestrutura s˜ao importante para o diagn´ostico e progn´ostico de algumas doen¸cas. Contudo, esta tarefa ´e um processo bastante demorado para ambas as estruturas, o que gera uma necessidade de um estadiamento autom´atico. Esta tese prop˜oes diferentes m´etodos de classifica¸c˜ao (classificadores discriminantes, k-NN e SVM) para detectar automaticamente os diferentes estados de sono e as fases A. Estes classificadores s˜ao validados com uma amostra composta por 30 pacientes. Para os estados de sono o melhor modelo ´e o SVM que obt´em uma taxa de sucesso de 72% e de sensibilidades para cada estado de sono W, N1, N2, N3 e REM de 62%, 54%, 73%, 83% e 69%, respectivamente. Quanto ao estadiamento do CAP o melhor m´etodo de classifica¸c˜ao ´e tamb´em o SVM com uma taxa de sucesso de 71% e sensibilidades de 76%, 58%, 44% e 24% para as fases B, A1, A2 e A3. As sensibilidades obtidas por este ´ultimo m´etodo s˜ao muito acima das encontradas na literatura at´e `a data. |
Description: | Dissertação de Mestrado em Engenharia Biomédica apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra | URI: | https://hdl.handle.net/10316/30813 | Rights: | openAccess |
Appears in Collections: | UC - Dissertações de Mestrado FCTUC Física - Teses de Mestrado |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dissertação_Fatima Machado_2015.pdf | 12.38 MB | Adobe PDF | View/Open |
Page view(s) 50
494
checked on Oct 29, 2024
Download(s)
255
checked on Oct 29, 2024
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.