Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/114101
Title: What makes a Stone topological algebra Profinite
Authors: Almeida, Jorge
Goulet-Ouellet, Herman 
Klíma, Ondřej
Keywords: Stone topological algebra; Profinite algebra; Syntactic congruence
Issue Date: 2023
Publisher: Springer Nature
Project: UID/MAT/00144/2020 
SFRH/BSAB/142872/2018 
UIDB/00324/2020 
UIDB/00144/2020 
PD/BD/150350/2019 
Grant 19-12790S of the Grant Agency of the Czech Republic 
metadata.degois.publication.title: Algebra Universalis
metadata.degois.publication.volume: 84
metadata.degois.publication.issue: 1
Abstract: This paper is a contribution to understanding what properties should a topological algebra on a Stone space satisfy to be profinite. We reformulate and simplify proofs for some known properties using syntactic congruences. We also clarify the role of various alternative ways of describing syntactic congruences, namely by finite sets of terms and by compact sets of continuous self mappings of the algebra.
URI: https://hdl.handle.net/10316/114101
ISSN: 0002-5240
1420-8911
DOI: 10.1007/s00012-023-00804-w
Rights: openAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
FCTUC Matemática - Artigos em Revistas Internacionais

Files in This Item:
Show full item record

Page view(s)

83
checked on Nov 5, 2024

Download(s)

53
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons