Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/113893
Campo DCValorIdioma
dc.contributor.authorRappoport, Tatiana G-
dc.contributor.authorMorgado, Tiago A.-
dc.contributor.authorLannebère, Sylvain-
dc.contributor.authorSilveirinha, Mário G.-
dc.date.accessioned2024-03-08T16:12:06Z-
dc.date.available2024-03-08T16:12:06Z-
dc.date.issued2023-02-17-
dc.identifier.issn0031-9007pt
dc.identifier.issn1079-7114pt
dc.identifier.urihttps://hdl.handle.net/10316/113893-
dc.description.abstractTransistors are key elements of electronic circuits as they enable, for example, the isolation or amplification of voltage signals. While conventional transistors are point-type (lumped-element) devices, it may be interesting to realize a distributed transistor-type optical response in a bulk material. Here, we show that low-symmetry two-dimensional metallic systems may be the ideal solution to implement such a distributed-transistor response. To this end, we use the semiclassical Boltzmann equation approach to characterize the optical conductivity of a two-dimensional material under a static electric bias. Similar to the nonlinear Hall effect, the linear electro-optic (EO) response depends on the Berry curvature dipole and can lead to nonreciprocal optical interactions. Most interestingly, our analysis uncovers a novel non-Hermitian linear EO effect that can lead to optical gain and to a distributed transistor response. We study a possible realization based on strained bilayer graphene. Our analysis reveals that the optical gain for incident light transmitted through the biased system depends on the light polarization, and can be quite large, especially for multilayer configurations.pt
dc.language.isoengpt
dc.publisherAmerican Physical Societypt
dc.relationIT DL 57/2016/CP1353/CT000pt
dc.relationA F Harvey Researchpt
dc.relationSimons Foundation - 733700pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectPhysics - Mesoscopic Systems and Quantum Hall Effect; Physics - Mesoscopic Systems and Quantum Hall Effect; Physics - Opticspt
dc.titleEngineering Transistorlike Optical Gain in Two-Dimensional Materials with Berry Curvature Dipolespt
dc.typearticle-
degois.publication.firstPage076901pt
degois.publication.issue7pt
degois.publication.titlePhysical Review Letterspt
dc.peerreviewedyespt
dc.identifier.doi10.1103/PhysRevLett.130.076901pt
degois.publication.volume130pt
dc.date.embargo2023-02-17*
uc.date.periodoEmbargo0pt
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.openairetypearticle-
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.cerifentitytypePublications-
crisitem.author.researchunitIT - Institute of Telecommunications-
crisitem.author.orcid0000-0003-3199-3917-
crisitem.author.orcid0000-0002-3730-1689-
Aparece nas coleções:I&D IT - Artigos em Revistas Internacionais
FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais
Ficheiros deste registo:
Mostrar registo em formato simples

Visualizações de página

96
Visto em 28/ago/2024

Downloads

89
Visto em 28/ago/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons