Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/113157
DC FieldValueLanguage
dc.contributor.authorHrynchak, Ivanna-
dc.contributor.authorCocioabă, Diana-
dc.contributor.authorFonseca, Alexandra I.-
dc.contributor.authorLeonte, Radu-
dc.contributor.authorCarmo, Sérgio do-
dc.contributor.authorCornoiu, Roxana-
dc.contributor.authorFalcão, Amílcar-
dc.contributor.authorNiculae, Dana-
dc.contributor.authorAbrunhosa, Antero-
dc.date.accessioned2024-02-07T11:17:47Z-
dc.date.available2024-02-07T11:17:47Z-
dc.date.issued2023-06-09-
dc.identifier.issn1420-3049-
dc.identifier.urihttps://hdl.handle.net/10316/113157-
dc.description.abstractAntibody and nanobody-based copper-64 radiopharmaceuticals are increasingly being proposed as theranostic tools in multiple human diseases. While the production of copper-64 using solid targets has been established for many years, its use is limited due to the complexity of solid target systems, which are available in only a few cyclotrons worldwide. In contrast, liquid targets, available in virtually in all cyclotrons, constitute a practical and reliable alternative. In this study, we discuss the production, purification, and radiolabeling of antibodies and nanobodies using copper-64 obtained from both solid and liquid targets. Copper-64 production from solid targets was performed on a TR-19 cyclotron with an energy of 11.7 MeV, while liquid target production was obtained by bombarding a nickel-64 solution using an IBA Cyclone Kiube cyclotron with 16.9 MeV on target. Copper-64 was purified from both solid and liquid targets and used to radiolabel NODAGA-Nb, NOTA-Nb, and DOTA-Trastuzumab conjugates. Stability studies were conducted on all radioimmunoconjugates in mouse serum, PBS, and DTPA. Irradiation of the solid target yielded 13.5 ± 0.5 GBq with a beam current of 25 ± 1.2 μA and an irradiation time of 6 h. On the other hand, irradiation of the liquid target resulted in 2.8 ± 1.3 GBq at the end of bombardment (EOB) with a beam current of 54.5 ± 7.8 μA and an irradiation time of 4.1 ± 1.3 h. Successful radiolabeling of NODAGA-Nb, NOTA-Nb, and DOTA-Trastuzumab with copper-64 from both solid and liquid targets was achieved. Specific activities (SA) obtained with the solid target were 0.11, 0.19, and 0.33 MBq/μg for NODAGA-Nb, NOTA-Nb, and DOTA-trastuzumab, respectively. For the liquid target, the corresponding SA values were 0.15, 0.12, and 0.30 MBq/μg. Furthermore, all three radiopharmaceuticals demonstrated stability under the testing conditions. While solid targets have the potential to produce significantly higher activity in a single run, the liquid process offers advantages such as speed, ease of automation, and the feasibility of back-to-back production using a medical cyclotron. In this study, successful radiolabeling of antibodies and nanobodies was achieved using both solid and liquid targets approaches. The radiolabeled compounds exhibited high radiochemical purity and specific activity, rendering them suitable for subsequent in vivo pre-clinical imaging studies.pt
dc.language.isoengpt
dc.publisherMDPIpt
dc.relationThis work was funded by the PORTUGUESE FOUNDATION FOR SCIENCE AND TECHNOLOGY (FCT) and Unitatea Executiva Pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (UEFISCDI, Romania): ERANET- EURONANOMED-3-I2PAD, contract number 281/2022. I.H. is a PhD fellow of the FCT (PD/BDE/150331/2019). A.I.F. is a PhD fellow of the FCT (PD/BDE/150681/2020). Access to TR-19 Cyclotron facility was granted under IOSIN program of the Romanian Ministry of Research, Innovation and Digitization.pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectcopper-64pt
dc.subjectliquid targetpt
dc.subjectsolid targetpt
dc.subjectradiolabelingpt
dc.subjectantibodiespt
dc.subjectnanobodiespt
dc.titleAntibody and Nanobody Radiolabeling with Copper-64: Solid vs. Liquid Target Approachpt
dc.typearticlept
degois.publication.firstPage4670pt
degois.publication.issue12pt
degois.publication.titleMoleculespt
dc.peerreviewedyespt
dc.identifier.doi10.3390/molecules28124670-
degois.publication.volume28pt
dc.date.embargo2023-06-09*
dc.identifier.pmid37375223-
uc.date.periodoEmbargo0pt
dc.identifier.eissn1420-3049-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
crisitem.author.researchunitICNAS - Institute for Nuclear Sciences Applied to Health-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.researchunitICNAS - Institute for Nuclear Sciences Applied to Health-
crisitem.author.orcid0000-0002-1671-7861-
crisitem.author.orcid0000-0003-4631-7268-
crisitem.author.orcid0000-0002-3854-6549-
crisitem.author.orcid0000-0002-4145-854X-
Appears in Collections:FFUC- Artigos em Revistas Internacionais
I&D CIBIT - Artigos em Revistas Internacionais
I&D ICNAS - Artigos em Revistas Internacionais
Show simple item record

SCOPUSTM   
Citations

2
checked on Apr 29, 2024

WEB OF SCIENCETM
Citations

1
checked on May 2, 2024

Page view(s)

40
checked on May 8, 2024

Download(s)

15
checked on May 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons