Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/112250
Título: | Detector signal characterization with a Bayesian network in XENONnT | Autor: | Cardoso, J. M. R. Lopes, J. A. M. Santos, J. M. F. dos Silva, M. The Xenon Collaboration |
Palavras-chave: | High Energy Physics - Experiment | Data: | 11-Abr-2023 | Editora: | American Physical Society | Título da revista, periódico, livro ou evento: | Physical Review D | Volume: | 108 | Número: | 1 | Resumo: | We developed a detector signal characterization model based on a Bayesian network trained on the waveform attributes generated by a dual-phase xenon time projection chamber. By performing inference on the model, we produced a quantitative metric of signal characterization and demonstrate that this metric can be used to determine whether a detector signal is sourced from a scintillation or an ionization process. We describe the method and its performance on electronic-recoil (ER) data taken during the first science run of the XENONnT dark matter experiment. We demonstrate the first use of a Bayesian network in a waveform-based analysis of detector signals. This method resulted in a 3% increase in ER event-selection efficiency with a simultaneously effective rejection of events outside of the region of interest. The findings of this analysis are consistent with the previous analysis from XENONnT, namely a background-only fit of the ER data. | Descrição: | 11 pages, 8 figures | URI: | https://hdl.handle.net/10316/112250 | ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.108.012016 | Direitos: | openAccess |
Aparece nas coleções: | FCTUC Física - Artigos em Revistas Internacionais LIBPhys - Artigos em Revistas Internacionais |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Detector-signal-characterization-with-a-Bayesian-network-in-XENONnTPhysical-Review-D.pdf | 829.51 kB | Adobe PDF | Ver/Abrir |
Visualizações de página
55
Visto em 30/out/2024
Downloads
41
Visto em 30/out/2024
Google ScholarTM
Verificar
Altmetric
Altmetric
Este registo está protegido por Licença Creative Commons