Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/112250
Título: Detector signal characterization with a Bayesian network in XENONnT
Autor: Cardoso, J. M. R. 
Lopes, J. A. M. 
Santos, J. M. F. dos 
Silva, M. 
The Xenon Collaboration
Palavras-chave: High Energy Physics - Experiment
Data: 11-Abr-2023
Editora: American Physical Society
Título da revista, periódico, livro ou evento: Physical Review D
Volume: 108
Número: 1
Resumo: We developed a detector signal characterization model based on a Bayesian network trained on the waveform attributes generated by a dual-phase xenon time projection chamber. By performing inference on the model, we produced a quantitative metric of signal characterization and demonstrate that this metric can be used to determine whether a detector signal is sourced from a scintillation or an ionization process. We describe the method and its performance on electronic-recoil (ER) data taken during the first science run of the XENONnT dark matter experiment. We demonstrate the first use of a Bayesian network in a waveform-based analysis of detector signals. This method resulted in a 3% increase in ER event-selection efficiency with a simultaneously effective rejection of events outside of the region of interest. The findings of this analysis are consistent with the previous analysis from XENONnT, namely a background-only fit of the ER data.
Descrição: 11 pages, 8 figures
URI: https://hdl.handle.net/10316/112250
ISSN: 2470-0010
2470-0029
DOI: 10.1103/PhysRevD.108.012016
Direitos: openAccess
Aparece nas coleções:FCTUC Física - Artigos em Revistas Internacionais
LIBPhys - Artigos em Revistas Internacionais

Ficheiros deste registo:
Mostrar registo em formato completo

Visualizações de página

55
Visto em 30/out/2024

Downloads

41
Visto em 30/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons