Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/109432
Título: Long-term effects of an acute and systemic administration of LPS on adult neurogenesis and spatial memory
Autor: Valero, Jorge 
Mastrella, Giorgia
Neiva, Ismael 
Sánchez, Silvia
Malva, João O. 
Palavras-chave: 3xTg-ADmouse; doublecortin cells; dentate gyrus; cognitive reserve; hippocampus; inflammation; microglia; synaptic puncta
Data: 2014
Editora: Frontiers Media S.A.
Projeto: PEst-C/SAU/LA0001/2013-2014 ItemCrisRefDisplayStrategy.project.deleted.icon
SFRH/BPD/68950/2010 
scholarship “Università degli Studi di Trieste.” 
PEst-C/SAU/LA0001/2013 
Título da revista, periódico, livro ou evento: Frontiers in Neuroscience
Volume: 8
Número: APR
Resumo: The cognitive reserve is the capacity of the brain to maintain normal performance while exposed to insults or ageing. Increasing evidences point to a role for the interaction between inflammatory conditions and cognitive reserve status during Alzheimer's disease (AD) progression. The production of new neurons along adult life can be considered as one of the components of the cognitive reserve. Interestingly, adult neurogenesis is decreased in mouse models of AD and following inflammatory processes. The aim of this work is to reveal the long-term impact of a systemic inflammatory event on memory and adult neurogenesis in wild type (WT) and triple transgenic mouse model of AD (3xTg-AD). Four month-old mice were intraperitoneally injected once with saline or lipopolysaccharide (LPS) and their performance on spatial memory analyzed with the Morris water maze (MWM) test 7 weeks later. Our data showed that a single intraperitoneal injection with LPS has a long-term impact in the production of hippocampal neurons. Consistently, LPS-treated WT mice showed less doublecortin-positive neurons, less synaptic contacts in newborn neurons, and decreased dendritic volume and complexity. These surprising observations were accompanied with memory deficits. 3xTg-AD mice showed a decrease in new neurons in the dentate gyrus compatible with, although exacerbated, the pattern observed in WT LPS-treated mice. In 3xTg-AD mice, LPS injection did not significantly affected the production of new neurons but reduced their number of synaptic puncta and impaired memory performance, when compared to the observations made in saline-treated 3xTg-AD mice. These data indicate that LPS treatment induces a long-term impairment on hippocampal neurogenesis and memory. Our results show that acute neuroinflammatory events influence the production of new hippocampal neurons, affecting the cognitive reserve and leading to the development of memory deficits associated to AD pathology.
URI: https://hdl.handle.net/10316/109432
ISSN: 1662-4548
DOI: 10.3389/fnins.2014.00083
Direitos: openAccess
Aparece nas coleções:I&D IBILI - Artigos em Revistas Internacionais
FMUC Medicina - Artigos em Revistas Internacionais
IIIUC - Artigos em Revistas Internacionais
I&D CNC - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Visualizações de página

102
Visto em 5/nov/2024

Downloads

70
Visto em 5/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons