Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/108722
DC FieldValueLanguage
dc.contributor.authorRubens, Jacob R.-
dc.contributor.authorSelvaggio, Gianluca-
dc.contributor.authorLu, Timothy K.-
dc.date.accessioned2023-09-11T08:34:42Z-
dc.date.available2023-09-11T08:34:42Z-
dc.date.issued2016-06-03-
dc.identifier.issn2041-1723pt
dc.identifier.urihttps://hdl.handle.net/10316/108722-
dc.description.abstractLiving cells implement complex computations on the continuous environmental signals that they encounter. These computations involve both analogue- and digital-like processing of signals to give rise to complex developmental programs, context-dependent behaviours and homeostatic activities. In contrast to natural biological systems, synthetic biological systems have largely focused on either digital or analogue computation separately. Here we integrate analogue and digital computation to implement complex hybrid synthetic genetic programs in living cells. We present a framework for building comparator gene circuits to digitize analogue inputs based on different thresholds. We then demonstrate that comparators can be predictably composed together to build band-pass filters, ternary logic systems and multi-level analogue-to-digital converters. In addition, we interface these analogue-to-digital circuits with other digital gene circuits to enable concentration-dependent logic. We expect that this hybrid computational paradigm will enable new industrial, diagnostic and therapeutic applications with engineered cells.pt
dc.language.isoengpt
dc.publisherSpringer Naturept
dc.relationNSF Graduate Research Fellowshippt
dc.relationSFRH/BD/51576/2011pt
dc.relationNational Science Foundation (#1350625 and #1124247)pt
dc.relationOffice of Naval Research (#N000141310424)pt
dc.relationNIH New Innovator Award (#1DP2OD008435)pt
dc.relationNIH National Centers for Systems Biology (#1P50GM098792)pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subject.meshCell Engineeringpt
dc.subject.meshEscherichia colipt
dc.subject.meshGenetic Engineeringpt
dc.subject.meshSignal Processing, Computer-Assistedpt
dc.subject.meshComputers, Molecularpt
dc.subject.meshGene Regulatory Networkspt
dc.subject.meshGenes, Syntheticpt
dc.subject.meshSynthetic Biologypt
dc.titleSynthetic mixed-signal computation in living cellspt
dc.typearticle-
degois.publication.firstPage11658pt
degois.publication.issue1pt
degois.publication.titleNature Communicationspt
dc.peerreviewedyespt
dc.identifier.doi10.1038/ncomms11658pt
degois.publication.volume7pt
dc.date.embargo2016-06-03*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
Appears in Collections:I&D CNC - Artigos em Revistas Internacionais
Files in This Item:
Show simple item record

Page view(s)

13
checked on May 8, 2024

Download(s)

6
checked on May 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons