Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/108631
Title: | A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces | Authors: | Melo, Rita Fieldhouse, Robert Melo, André Correia, João D. G. Cordeiro, Maria Natália D. S. Gümüş, Zeynep H. Costa, Joaquim Bonvin, Alexandre M. J. J. Moreira, Irina S. |
Keywords: | protein-protein interfaces; hot-spots; machine learning; Solvent Accessible Surface Area (SASA); evolutionary sequence conservation | Issue Date: | 27-Jul-2016 | Publisher: | MDPI | Project: | SFRH/BPD/97650/2013 UID/Multi/04349/2013 info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID/NEU/04539/2013/PT |
metadata.degois.publication.title: | International Journal of Molecular Sciences | metadata.degois.publication.volume: | 17 | metadata.degois.publication.issue: | 8 | Abstract: | Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest) algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set. | URI: | https://hdl.handle.net/10316/108631 | ISSN: | 1422-0067 | DOI: | 10.3390/ijms17081215 | Rights: | openAccess |
Appears in Collections: | I&D CNC - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A-machine-learning-approach-for-hotspot-detection-at-proteinprotein-interfacesInternational-Journal-of-Molecular-Sciences.pdf | 527.34 kB | Adobe PDF | View/Open |
Page view(s)
77
checked on Nov 5, 2024
Download(s)
16
checked on Nov 5, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License