Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/107208
Title: | Visual complexity modelling based on image features fusion of multiple kernels | Authors: | Fernandez-Lozano, Carlos Carballal, Adrian Machado, Penousal Santos, Antonino Romero, Juan |
Keywords: | Correlation; Machine learning; Zipf's law; Compression error; Visual stimuli; Visual complexity | Issue Date: | 2019 | Publisher: | PeerJ | Serial title, monograph or event: | PeerJ | Volume: | 7 | Abstract: | Humans' perception of visual complexity is often regarded as one of the key principles of aesthetic order, and is intimately related to the physiological, neurological and, possibly, psychological characteristics of the human mind. For these reasons, creating accurate computational models of visual complexity is a demanding task. Building upon on previous work in the field (Forsythe et al., 2011; Machado et al., 2015) we explore the use of Machine Learning techniques to create computational models of visual complexity. For that purpose, we use a dataset composed of 800 visual stimuli divided into five categories, describing each stimulus by 329 features based on edge detection, compression error and Zipf's law. In an initial stage, a comparative analysis of representative state-of-the-art Machine Learning approaches is performed. Subsequently, we conduct an exhaustive outlier analysis. We analyze the impact of removing the extreme outliers, concluding that Feature Selection Multiple Kernel Learning obtains the best results, yielding an average correlation to humans' perception of complexity of 0.71 with only twenty-two features. These results outperform the current state-of-the-art, showing the potential of this technique for regression. | URI: | https://hdl.handle.net/10316/107208 | ISSN: | 2167-8359 | DOI: | 10.7717/peerj.7075 | Rights: | openAccess |
Appears in Collections: | I&D CISUC - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Visual-complexity-modelling-based-on-image-features-fusion-of-multiple-kernelsPeerJ.pdf | 1.59 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
20
checked on Sep 16, 2024
WEB OF SCIENCETM
Citations
16
checked on Sep 2, 2024
Page view(s)
54
checked on Oct 9, 2024
Download(s)
30
checked on Oct 9, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License