Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/106562
DC FieldValueLanguage
dc.contributor.authorVega, Rocío-
dc.contributor.authorCarretero, Manuel-
dc.contributor.authorTravasso, Rui D.-
dc.contributor.authorBonilla, Luis L.-
dc.date.accessioned2023-04-11T08:25:15Z-
dc.date.available2023-04-11T08:25:15Z-
dc.date.issued2020-01-
dc.identifier.issn1553-7358-
dc.identifier.urihttps://hdl.handle.net/10316/106562-
dc.description.abstractDuring angiogenesis, new blood vessels sprout and grow from existing ones. This process plays a crucial role in organ development and repair, in wound healing and in numerous pathological processes such as cancer progression or diabetes. Here, we present a mathematical model of early stage angiogenesis that permits exploration of the relative importance of mechanical, chemical and cellular cues. Endothelial cells proliferate and move over an extracellular matrix by following external gradients of Vessel Endothelial Growth Factor, adhesion and stiffness, which are incorporated to a Cellular Potts model with a finite element description of elasticity. The dynamics of Notch signaling involving Delta-4 and Jagged-1 ligands determines tip cell selection and vessel branching. Through their production rates, competing Jagged-Notch and Delta-Notch dynamics determine the influence of lateral inhibition and lateral induction on the selection of cellular phenotypes, branching of blood vessels, anastomosis (fusion of blood vessels) and angiogenesis velocity. Anastomosis may be favored or impeded depending on the mechanical configuration of strain vectors in the ECM near tip cells. Numerical simulations demonstrate that increasing Jagged production results in pathological vasculatures with thinner and more abundant vessels, which can be compensated by augmenting the production of Delta ligands.pt
dc.language.isoengpt
dc.publisherPublic Library of Sciencept
dc.relationUID/FIS/04564/2016pt
dc.relationPOCI-01-0145-FEDER-031743pt
dc.relationPTDC/BIA-CEL/31743/2017pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.titleNotch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational modelpt
dc.typearticlept
degois.publication.firstPagee1006919pt
degois.publication.issue1pt
degois.publication.titlePLoS Computational Biologypt
dc.peerreviewedyespt
dc.identifier.doi10.1371/journal.pcbi.1006919-
degois.publication.volume16pt
dc.date.embargo2020-01-01*
dc.identifier.pmid31986145-
uc.date.periodoEmbargo0pt
dc.identifier.eissn1553-7358-
item.openairetypearticle-
item.fulltextCom Texto completo-
item.languageiso639-1en-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-6078-0721-
Appears in Collections:I&D CFis - Artigos em Revistas Internacionais
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons