Please use this identifier to cite or link to this item:
Title: Limitations to Starch Utilization in Barramundi (Lates calcarifer) as Revealed by NMR-Based Metabolomics
Authors: Palma, Mariana 
Trenkner, Lauren H.
Rito, João 
Tavares, Ludgero C. 
Silva, Emanuel
Glencross, Brett D.
Jones, John Griffith 
Wade, Nicholas M.
Viegas, Ivan 
Keywords: Asian seabass; 2H NMR; metabolomics; aquaculture; hepatic glycogen
Issue Date: 2020
Publisher: Frontiers Media S.A.
Serial title, monograph or event: Frontiers in Physiology
Volume: 11
Abstract: Practical diets for commercial barramundi production rarely contain greater than 10% starch, used mainly as a binding agent during extrusion. Alternative ingredients such as digestible starch have shown some capacity to spare dietary protein catabolism to generate glucose. In the present study, a carnivorous fish species, the Asian seabass (Lates calcarifer) was subjected to two diets with the same digestible energy: Protein (P) - with high protein content (no digestible starch); and Starch (S) - with high digestible (pregelatinized) starch content. The effects of a high starch content diet on hepatic glycogen synthesis as well as the muscle and liver metabolome were studied using a complementary approach of 1H and 2H NMR. The hepatosomatic index was lower for fish fed high starch content diet while the concentration of hepatic glycogen was similar between groups. However, increased glycogen synthesis via the direct pathway was observed in the fish fed high starch content diet which is indicative of increased carbohydrate utilization. Multivariate analysis also showed differences between groups in the metabolome of both tissues. Univariate analysis revealed more variations in liver than in muscle of fish fed high starch content diet. Variations in metabolome were generally in agreement with the increase in the glycogen synthesis through direct pathway, however, this metabolic shift seemed to be insufficient to keep the growth rate as ensured by the diet with high protein content. Although liver glycogen does not make up a substantial quantity of total stored dietary energy in carnivorous fish, it is a key regulatory intermediate in dietary energy utilization.
ISSN: 1664-042X
DOI: 10.3389/fphys.2020.00205
Rights: openAccess
Appears in Collections:I&D CFE - Artigos em Revistas Internacionais
I&D CNC - Artigos em Revistas Internacionais

Show full item record

Page view(s)

checked on Feb 20, 2024


checked on Feb 20, 2024

Google ScholarTM




This item is licensed under a Creative Commons License Creative Commons