Please use this identifier to cite or link to this item:
Title: Convolutional Neural Network for Seizure Detection of Nocturnal Frontal Lobe Epilepsy
Authors: Pisano, Fabio
Sias, Giuliana
Fanni, Alessandra
Cannas, Barbara
Dourado, António 
Pisano, Barbara
Teixeira, Cesar A.
Issue Date: 2020
Publisher: Hindawi
Project: EU FP 7 Project EPILEPSIAE Grant 211713 
Open Access Publishing Fund of the University of Cagliari, with the funding of the Regione Autonoma della Sardegna– L.R. n. 7/2007 
Serial title, monograph or event: Complexity
Volume: 2020
Abstract: 'e Nocturnal Frontal Lobe Epilepsy (NFLE) is a form of epilepsy in which seizures occur predominantly during sleep. In other forms of epilepsy, the commonly used clinical approach mainly involves manual inspection of encephalography (EEG) signals, a laborious and time-consuming process which often requires the contribution of more than one experienced neurologist. In the last decades, numerous approaches to automate this detection have been proposed and, more recently, machine learning has shown very promising performance. In this paper, an original Convolutional Neural Network (CNN) architecture is proposed to develop patient-specific seizure detection models for three patients affected by NFLE. 'e performances, in terms of accuracy, sensitivity, and specificity, exceed by several percentage points those in the most recent literature. 'e capability of the patient-specific models has been also tested to compare the obtained seizure onset times with those provided by the neurologists, with encouraging results. Moreover, the same CNN architecture has been used to develop a cross-patient seizure detection system, resorting to the transfer-learning paradigm. Starting from a patient-specific model, few data from a new patient are enough to customize his model. 'is contribution aims to alleviate the task of neurologists, who may have a robust indication to corroborate their clinical conclusions.
ISSN: 1076-2787
DOI: 10.1155/2020/4825767
Rights: openAccess
Appears in Collections:I&D CISUC - Artigos em Revistas Internacionais

Show full item record


checked on Dec 4, 2023


checked on Dec 2, 2023

Page view(s)

checked on Nov 28, 2023


checked on Nov 28, 2023

Google ScholarTM




This item is licensed under a Creative Commons License Creative Commons