Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/105461
Title: | Wearable Edge AI Applications for Ecological Environments | Authors: | Silva, Mateus C. da Silva, Jonathan C. F. Delabrida, Saul Bianchi, Andrea G. C. Ribeiro, Sérvio P Silva, Jorge Sá Oliveira, Ricardo A. R. |
Keywords: | (multipurpose) wearable edge AI; edge computing; wearable computing; computer vision; embedded systems | Issue Date: | 27-Jul-2021 | Publisher: | MDPI | Project: | CAPES (Finance Code 001) Pró-Reitoria de Pesquisa e Inovação (23109.000928/2020-33) CNPq (306572/2019-2 and 308219/2020-1) |
Serial title, monograph or event: | Sensors | Volume: | 21 | Issue: | 15 | Abstract: | Ecological environments research helps to assess the impacts on forests and managing forests. The usage of novel software and hardware technologies enforces the solution of tasks related to this problem. In addition, the lack of connectivity for large data throughput raises the demand for edge-computing-based solutions towards this goal. Therefore, in this work, we evaluate the opportunity of using a Wearable edge AI concept in a forest environment. For this matter, we propose a new approach to the hardware/software co-design process. We also address the possibility of creating wearable edge AI, where the wireless personal and body area networks are platforms for building applications using edge AI. Finally, we evaluate a case study to test the possibility of performing an edge AI task in a wearable-based environment. Thus, in this work, we evaluate the system to achieve the desired task, the hardware resource and performance, and the network latency associated with each part of the process. Through this work, we validated both the design pattern review and case study. In the case study, the developed algorithms could classify diseased leaves with a circa 90% accuracy with the proposed technique in the field. This results can be reviewed in the laboratory with more modern models that reached up to 96% global accuracy. The system could also perform the desired tasks with a quality factor of 0.95, considering the usage of three devices. Finally, it detected a disease epicenter with an offset of circa 0.5 m in a 6 m × 6 m × 12 m space. These results enforce the usage of the proposed methods in the targeted environment and the proposed changes in the co-design pattern. | URI: | https://hdl.handle.net/10316/105461 | ISSN: | 1424-8220 | DOI: | 10.3390/s21155082 | Rights: | openAccess |
Appears in Collections: | FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Wearable-edge-ai-applications-for-ecological-environmentsSensors.pdf | 10.26 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
12
checked on Oct 7, 2024
WEB OF SCIENCETM
Citations
7
checked on Oct 2, 2024
Page view(s)
66
checked on Oct 8, 2024
Download(s)
71
checked on Oct 8, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License