Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/8986
DC FieldValueLanguage
dc.contributor.authorFerreira, J. A.-
dc.contributor.authorOliveira, P.-
dc.date.accessioned2009-02-10T15:45:23Z-
dc.date.available2009-02-10T15:45:23Z-
dc.date.issued2005en_US
dc.identifier.citationApplicable Analysis - Taylor & Francis. 84:12 (2005) 1231-1246en_US
dc.identifier.urihttp://hdl.handle.net/10316/8986-
dc.description.abstractIn this article the qualitative properties of numerical traveling wave solutions for integro- differential equations, which generalize the well known Fisher equation are studied. The integro-differential equation is replaced by an equivalent hyperbolic equation which allows us to characterize the numerical velocity of traveling wave solutions. Numerical results are presented.en_US
dc.description.urihttp://www.informaworld.com/10.1080/00036810500048277en_US
dc.language.isoengeng
dc.rightsopenAccesseng
dc.titleQualitative behavior of numerical traveling solutions for reaction–diffusion equations with memoryen_US
dc.typearticleen_US
item.grantfulltextopen-
item.languageiso639-1en-
item.fulltextCom Texto completo-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Qualitative behavior.pdf1.16 MBAdobe PDFView/Open
Show simple item record

Page view(s)

224
checked on Sep 17, 2019

Download(s)

38
checked on Sep 17, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.