Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/8333
Title: Effects of Ca2+ Channel Blockers on Ca2+ Translocation Across Synaptosomal Membranes
Authors: Carvalho, C. A. M. 
Coutinho, O. P. 
Carvalho, A. P. 
Issue Date: 1986
Citation: Journal of Neurochemistry. 47:6 (1986) 1774-1784
Abstract: The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 ± 0.1 nM, a Bmax of 161 ± 27 fmol.mg-1 protein, and a Hill slope of 1.07, at 25°C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: (1) nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; (2) verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50= 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 03BCM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10-5-10-3M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.
URI: https://hdl.handle.net/10316/8333
DOI: 10.1111/j.1471-4159.1986.tb13088.x
Rights: openAccess
Appears in Collections:FCTUC Ciências da Vida - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
obra.pdf1.12 MBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

34
checked on Nov 9, 2022

WEB OF SCIENCETM
Citations 5

38
checked on Apr 2, 2024

Page view(s)

256
checked on Apr 23, 2024

Download(s)

257
checked on Apr 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.