Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/7756
DC FieldValueLanguage
dc.contributor.authorVicente, L. N.-
dc.date.accessioned2009-02-17T11:18:45Z-
dc.date.available2009-02-17T11:18:45Z-
dc.date.issued2000en_US
dc.identifier.citationComputational Optimization and Applications. 17:1 (2000) 23-35en_US
dc.identifier.urihttp://hdl.handle.net/10316/7756-
dc.description.abstractThis paper addresses the local convergence properties of the affine-scaling interior-point algorithm for nonlinear programming. The analysis of local convergence is developed in terms of parameters that control the interior-point scheme and the size of the residual of the linear system that provides the step direction. The analysis follows the classical theory for quasi-Newton methods and addresses q-linear, q-superlinear, and q-quadratic rates of convergence.en_US
dc.language.isoengeng
dc.rightsopenAccesseng
dc.titleLocal Convergence of the Affine-Scaling Interior-Point Algorithm for Nonlinear Programmingen_US
dc.typearticleen_US
dc.identifier.doi10.1023/A:1008774924658en_US
item.grantfulltextopen-
item.languageiso639-1en-
item.fulltextCom Texto completo-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
obra.pdf69 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

432
checked on Sep 17, 2019

Download(s) 50

482
checked on Sep 17, 2019

Google ScholarTM

Check

Altmetric

Dimensions


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.