Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/7584
DC FieldValueLanguage
dc.contributor.authorGeraldes, Carlos F. G. C.-
dc.contributor.authorCastro, M. Margarida C. A.-
dc.contributor.authorSherry, A. Dean-
dc.contributor.authorRamasamy, Ravichandran-
dc.date.accessioned2009-02-17T10:18:57Z-
dc.date.available2009-02-17T10:18:57Z-
dc.date.issued1997en_US
dc.identifier.citationMolecular and Cellular Biochemistry. 170:1 (1997) 53-64en_US
dc.identifier.urihttps://hdl.handle.net/10316/7584-
dc.description.abstractVanadium compounds have been shown to cause a variety of biological and metabolic effects including inhibition of certain enzymes, alteration of contractile function, and as an insulin like regulator of glucose metabolism. However, the influence of vanadium on metabolic and ionic changes in hearts remains to be understood. In this study we have examined the influence of vanadate on glucose metabolism and sodium transport in isolated perfused rat hearts. Hearts were perfused with 10 mM glucose and varying vanadate concentrations (0.7-100 µM) while changes in high energy phosphates (ATP and phosphocreatine (PCr)), intracellular pH, and intracellular sodium were monitored using 31P and 23Na NMR spectroscopy. Tissue lactate, glycogen, and (Na+, K+)-ATPase activity were also measured using biochemical assays. Under baseline conditions, vanadate increased tissue glycogen levels two fold and reduced (Na+, K+)-ATPase activity. Significant decreases in ATP and PCr were observed in the presence of vanadate, with little change in intracellular pH. These changes under baseline conditions were less severe when the hearts were perfused with glucose, palmitate and b-hydroxybutyrate. During ischemia vanadate did not limit the rise in intracellular sodium, but slowed sodium recovery on reperfusion. The presence of vanadate during ischemia resulted in attenuation of acidosis, and reduced lactate accumulation. Reperfusion in the presence of vanadate resulted in a slower ATP recovery, while intracellular pH and PCr recovery was not affected. These results indicate that vanadate alters glucose utilization and (Na+, K+)-ATPase activity and thereby influences the response of the myocardium to an ischemic insult.en_US
dc.language.isoengeng
dc.rightsopenAccesseng
dc.titleInfluence of vanadate on glycolysis, intracellular sodium, and pH in perfused rat heartsen_US
dc.typearticleen_US
dc.identifier.doi10.1023/A:1006899932108en_US
uc.controloAutoridadeSim-
item.grantfulltextopen-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.researchunitCQC - Coimbra Chemistry Centre-
crisitem.author.researchunitCQC - Coimbra Chemistry Centre-
crisitem.author.parentresearchunitFaculty of Sciences and Technology-
crisitem.author.parentresearchunitFaculty of Sciences and Technology-
crisitem.author.orcid0000-0002-0837-8329-
crisitem.author.orcid0000-0001-6811-3878-
crisitem.author.orcid0000-0001-7150-8301-
Appears in Collections:FCTUC Ciências da Vida - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
obra.pdf83.5 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.