Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/44401
Title: A proof of the C^p'-regularity conjecture in the plane p ′ -regularity conjecture in the plane
Authors: Araújo, Damião J. 
Teixeira, Eduardo V. 
Urbano, José Miguel 
Issue Date: 2017
Publisher: Elsevier
Project: info:eu-repo/grantAgreement/FCT/5876/147205/PT 
Abstract: We establish a new oscillation estimate for solutions of nonlinear partial differential equations of elliptic, degenerate type. This new tool yields a precise control on the growth rate of solutions near their set of critical points, where ellipticity degenerates. As a consequence, we are able to prove the planar counterpart of the longstanding conjecture that solutions of the degenerate p-Poisson equation with a bounded source are locally of class C^p'=C^(1,1/(p-1)) ; this regularity is optimal.
URI: http://hdl.handle.net/10316/44401
Other Identifiers: 10.1016/j.aim.2017.06.027
DOI: 10.1016/j.aim.2017.06.027
Rights: embargoedAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat 
Urbano_paper9.pdf286.65 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

4
checked on Jun 25, 2019

WEB OF SCIENCETM
Citations

3
checked on Jun 25, 2019

Page view(s) 5

961
checked on Jul 16, 2019

Download(s)

15
checked on Jul 16, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.