Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/44298
DC FieldValueLanguage
dc.contributor.authorNeves, Jorge-
dc.contributor.authorPapadakis, Stavros Argyrios-
dc.date.accessioned2017-11-06T21:15:21Z-
dc.date.available2017-11-06T21:15:21Z-
dc.date.issued2013-
dc.identifier.urihttp://hdl.handle.net/10316/44298-
dc.description.abstractKustin--Miller unprojection constructs more complicated Gorenstein rings from simpler ones. Geometrically, it inverts certain projections, and appears in the constructions of explicit birational geometry. However, it is often desirable to perform not only one but a series of unprojections. The main aim of the present paper is to develop a theory, which we call parallel Kustin--Miller unprojection, that applies when all the unprojection ideals of a series of unprojections correspond to ideals already present in the initial ring. As an application of the theory, we explicitly construct 7 families of Calabi--Yau 3-folds of high codimensions.por
dc.language.isoengpor
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/99275/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH/BPD/22846/2005/PTpor
dc.rightsembargoedAccesspor
dc.titleParallel Kustin-Miller unprojection with an application to Calabi-Yau geometrypor
dc.typearticlepor
degois.publication.firstPage203por
degois.publication.lastPage223por
degois.publication.issue1por
degois.publication.titleProceedings of the London Mathematical Societypor
dc.relation.publisherversionhttp://onlinelibrary.wiley.com/doi/10.1112/plms/pds036/abstract;jsessionid=46356450DBAEB7C003EBBCAB47388B20.f03t04por
dc.peerreviewedyespor
dc.identifier.doi10.1112/plms/pds036-
degois.publication.volume106por
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.languageiso639-1en-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
NevesPapadakis_ParallelKustinMillerUnprojection.pdf497.37 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

3
checked on Feb 18, 2020

WEB OF SCIENCETM
Citations 10

4
checked on Sep 2, 2021

Page view(s)

180
checked on Sep 17, 2021

Download(s)

141
checked on Sep 17, 2021

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.