Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/44294
DC FieldValueLanguage
dc.contributor.authorBini, Gilberto-
dc.contributor.authorFavale, Filippo F.-
dc.contributor.authorNeves, Jorge-
dc.contributor.authorPignatelli, Roberto-
dc.date.accessioned2017-11-06T20:42:25Z-
dc.date.available2017-11-06T20:42:25Z-
dc.date.issued2014-
dc.identifier.urihttp://hdl.handle.net/10316/44294-
dc.description.abstractWe classify the subgroups of the automorphism group of the product of 4 projective lines admitting an invariant anticanonical smooth divisor on which the action is free. As a first application, we describe new examples of Calabi-Yau 3-folds with small Hodge numbers. In particular, the Picard number is 1 and the number of moduli is 5. Furthermore, the fundamental group is non-trivial. We also construct a new family of minimal surfaces of general type with geometric genus zero, K^2=3 and fundamental group of order 16. We show that this family dominates an irreducible component of dimension 4 of the moduli space of the surfaces of general type.por
dc.language.isoengpor
dc.rightsembargoedAccesspor
dc.titleNew examples of Calabi-Yau threefolds and genus zero surfacespor
dc.typearticlepor
degois.publication.firstPage1350010por
degois.publication.issue02por
degois.publication.titleCommunications in Contemporary Mathematics Vol. 15, No. 3 (2013)por
dc.relation.publisherversionhttp://www.tandfonline.com/doi/full/10.1080/00927872.2012.714025por
dc.peerreviewedyespor
dc.identifier.doi10.1142/S0219199713500107-
degois.publication.volume16por
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.languageiso639-1en-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
BiniFavaleNevesPignatelli_NewExamplesOfCalabiYau.pdf355.25 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

6
checked on Feb 18, 2020

WEB OF SCIENCETM
Citations 10

3
checked on Sep 2, 2021

Page view(s)

97
checked on Sep 24, 2021

Download(s)

115
checked on Sep 24, 2021

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.