Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/26497
Title: Methods and Instrumentation for Non-Invasive Assessment of the Cardiovascular Condition
Authors: Pereira, Helena Catarina de Bastos Marques 
Orientador: Cardoso, João Manuel Rendeiro
Simões, José Basílio Portas Salgado
Keywords: Risco cardiovascular; Rigidez arterial; Velocidade de onda de pulso local; Forma de onda de pressão arterial; Pressão arterial sanguínea; Artéria carótida; Instrumentação biomédica não-invasiva; Sensores eletromecânicos; Sistemas de bancada de teste; Estudos de viabilidade
Issue Date: 18-Dec-2014
Citation: PEREIRA, Helena Catarina de Bastos Marques - Methods and instrumentation for non-invasive assessment of the cardiovascular condition. Coimbra : [s.n.], 2014. Tese de doutoramento. Disponível na WWW em: <http://hdl.handle.net/10316/26497>.
Abstract: As doenças cardiovasculares (DCVs) são a principal causa de morte a nível mundial e largamente responsáveis pelos custos crescentes nos sistemas de saúde. Nos últimos anos, a comunidade médica tem vindo a demonstrar um grande interesse na avaliação da rigidez arterial local, pressão arterial central e na análise da onda de pressão, devido aos seus valores preditivos no desenvolvimento deste tipo de patologias. Apesar da sua relevância, estes parâmetros hemodinâmicos permanecem particularmente difíceis de medir na prática clínica, já que a maioria dos dispositivos disponíveis exigem elevados conhecimentos técnicos (introduzindo a dependência de um operador), tecnologias dispendiosas ou apresentam abordagens de análise ineficientes. Este trabalho de investigação encontra assim a sua motivação no potencial impacto que instrumentação não-invasiva, exata e de fácil utilização pode ter na monitorização da condição hemodinâmica e no diagnóstico precoce e acompanhamento de DCVs. Neste contexto, uma nova geração de protótipos baseados na combinação de diferentes tipos de sensores eletromecânicos, bem como um conjunto de algoritmos de processamento de sinal adequados à extração de múltiplos parâmetros hemodinâmicos foram desenvolvidos. Dependendo do marcador de risco cardiovascular a ser avaliado, dois grandes grupos de dispositivos foram projetados. O primeiro grupo, focado na avaliação da rigidez arterial local, explorou uma configuração dupla inovadora com dois sensores acústicos ou piezoelétricos (PZs) para a medição da velocidade da onda de pulso (VOP) e outros índices temporais relevantes, num curto segmento da artéria carótida. O outro grupo, centrado na avaliação contínua da pressão arterial sanguínea (PAS) e onda de pressão arterial (OPA), também na artéria carótida, usou uma unidade vibrador-acelerómetro montada num mesmo suporte que permitiu ao acelerómetro detetar as vibrações produzidas, atenuadas e moduladas em amplitude quando em contacto mecânico com a parede do vaso. Os protótipos desenvolvidos foram extensivamente caracterizados em sistemas de bancada de teste, desenvolvidos para este efeito e capazes de reproduzir a variabilidade de uma ampla gama de situações clinicamente relevantes, bem como em condições in vivo. Relativamente à avaliação da rigidez arterial local, a primeira e segunda gerações de protótipos desenvolvidos apresentaram boa exatidão nos ensaios de resolução temporal realizados em tubos elásticos de bancadas de teste. O algoritmo de correlação cruzada exibiu a capacidade de medir VOPs altas (≈ 19 ms-1 e 14 ms-1) com erros relativos e coeficientes de variação inferiores a 10 % para os diferentes protótipos. Os sinais adquiridos provaram ser robustos e repetíveis, não sofrendo efeitos de crosstalk. Os resultados obtidos no estudo de validação pré-clínica em vinte indivíduos saudáveis com a segunda geração de protótipos foram ainda bastante satisfatórios. As VOPs carotídeas médias obtidas apresentaram uma correlação linear e forte entre si, estando os resultados próximos dos valores obtidos noutros estudos de referência. Além disso, a capacidade de reproduzir perfis de onda pressão distintos usando as sondas PZs foi também mostrada, quer utilizando o processo de desconvolução quer um circuito eletrónico integrador dedicado. No que diz respeito à avaliação da PAS e OPA, o processo de desmodulação produziu excelentes resultados na recuperação da morfologia da onda de pressão em condições de bancada de teste e in vivo. Para os dois protótipos desenvolvidos, várias formas de onda foram extraídas, com exatidão, das portadoras moduladas de aceleração, corrente ou potência elétricas, usando os algoritmos de deteção do envelope e do produto. Na bancada de teste foi possível reproduzir a forma de onda de pressão para posições de aplanação do tubo elástico sucessivamente mais elevadas com um erro quadrático médio de 2.4 ± 0.51 %, quando considerado o melhor método de extração. A eficácia de um novo método de calibração focado na utilização de curvas empíricas que convertem aceleração em pressão foi também demonstrado. Através da conservação da amplitude da portadora de aceleração, foi possível determinar os valores de pressão máximo, mínimo, médio e de pulso com erros relativos inferiores a 10 % em condições de bancada. Além disso, as diferenças de pressão entre o último protótipo desenvolvido e o sistema de referência foram, em média, ≤ 5 ± 8 mmHg, satisfazendo os critérios de exatidão de sistemas de medição de PAS clinicamente validados. Embora estudos de validação clínica sejam ainda necessários, os resultados globais obtidos neste trabalho para os dois principais tipos de protótipos dão bons indicadores quanto à sua utilização como alternativas válidas aos sistemas atualmente disponíveis, tanto em ambientes clínico quanto de investigação.
Cardiovascular diseases (CVDs) are the leading cause of death worldwide and largely responsible for the ever increasing costs in healthcare systems. In the last few years, the medical community has demonstrated a great interest in local arterial stiffness, central blood pressure assessment and pressure waveform analysis, due to their predictive values in the development of this type of pathologies. Despite their significance, these hemodynamic parameters remain particularly challenging to measure in standard clinical practice since most available devices require high technical expertise (introducing operator dependence), burdensome technologies and/or present ineffective analysis approaches. This research work finds its motivation in the potential impact that non-invasive, accurate and easy-to-use instrumentation could have on the monitoring of hemodynamic condition and on the diagnosis and control of early stages of CVDs. In this context, a new generation of prototypes based on the combination of different types of electromechanical sensors, along with a set of signal processing algorithms suited to the extraction of multiple hemodynamic parameters were developed. Two major groups of devices were designed depending on the cardiovascular risk marker to be assessed. The first group, focused on local arterial stiffness evaluation, explored an innovative double headed probe configuration of acoustic or piezoelectric (PZ) sensors for the measurement of pulse wave velocity (PWV) and other relevant time-based indices, in a short segment of the carotid artery. The other main group, centered on the continuous assessment of arterial blood pressure (ABP) and arterial pressure waveform (APW), also at the carotid artery, used a vibrator-accelerometer unit mounted in a common support that enabled the accelerometer to sense the produced vibrations, attenuated and modulated in amplitude when in mechanical contact with the vessel wall. The developed prototypes were extensively characterized in test bench systems, purposely built and capable of reproducing the variability of a wide range of clinically relevant situations, as well as in in vivo conditions. Regarding local arterial stiffness evaluation, the first and second generations of developed prototypes presented good accuracy in time resolution experiments on elastic tubes at the test bench. Cross-correlation algorithm exhibited the capability of measuring high PWVs (≈ 19 ms-1 and 14 ms-1) with relative errors and coefficients of variation lower than 10 % for the different prototypes. The acquired signals proved to be robust and repeatable, not suffering from crosstalk effect. The results obtained in a pre-clinical validation trial of twenty healthy subjects with the second generation of prototypes were very satisfactory, demonstrating that the mean carotid PWVs obtained were linearly and strongly correlated and were in agreement with other reference studies. Additionally, the ability to reproduce distinct wave pressure profiles using the PZs probes was also shown, either using the demodulation algorithm-based process or a special circuit for electronic integration. Concerning APW and ABP assessment, the demodulation process yielded excellent results in recovering the morphology of pressure wave in test bench and in in vivo conditions. For the two developed prototypes, several waveforms were accurately extracted from the acceleration, current or power modulated carriers using the envelope and product detector algorithms. It was possible to reproduce the pressure waveform for successive higher applanation positions of the elastic tube at the test bench with a root mean square error of 2.4 ± 0.51 %, when considering the best extracting method. The effectiveness of a novel calibration method focused on the use of empirical curves which convert acceleration into pressure was also demonstrated. Through the conservation of the acceleration carrier amplitude, it was possible to determine the maximum, minimum, mean and pulse pressure values with relative errors lower than 10 % in bench conditions. Also, the mean pressure differences between the latest prototype and the reference system were, on average, ≤ 5 ± 8 mmHg, satisfying the accuracy criteria of clinically validated ABP devices. Although clinical validation studies are still required, the global results obtained in this work for the two major types of prototypes provide great prospects regarding their use as valid alternatives to currently available systems, both in clinical and research settings.
Description: Tese de doutoramento em Física (Pré-Bolonha), Especialidade de Física Tecnológica, apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra
URI: https://hdl.handle.net/10316/26497
Rights: embargoedAccess
Appears in Collections:FCTUC Física - Teses de Doutoramento

Files in This Item:
File Description SizeFormat
Tese_HCP_final.pdf108.99 MBAdobe PDFView/Open
Show full item record

Page view(s)

224
checked on Apr 16, 2024

Download(s)

107
checked on Apr 16, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.