Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/11553
Title: Hölder continuity of local weak solutions for parabolic equations exhibiting two degeneracies
Authors: Urbano, José Miguel 
Keywords: Degenerate parabolic equations; Intrinsic rescaling; Degeneracies like powers
Issue Date: 1999
Publisher: Centro de Matemática da Universidade de Coimbra
Citation: Pré-Publicações DMUC. 99-18 (1999)
Abstract: We consider equations of the form atv - div(Q ( v)Vv) == 0 , where v E [0,1] and Q(v) degenerates for v == 0 and v == 1. We show that local weak solutions are locally Holder continuous provided Q behaves like a power near the two degeneracies. We adopt the technique of intrinsic rescaling developed by DiBenedetto.
URI: http://hdl.handle.net/10316/11553
Rights: openAccess
Appears in Collections:FCTUC Matemática - Artigos em Revistas Nacionais

Files in This Item:
File Description SizeFormat
Hölder continuity of local weak solutions.pdf366.06 kBAdobe PDFView/Open
Show full item record

Page view(s) 50

388
checked on Jun 10, 2021

Download(s)

36
checked on Jun 10, 2021

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.