Please use this identifier to cite or link to this item:
Title: Diffusion of muonic hydrogen in hydrogen gas and the measurement of the 1s hyperfine splitting of muonic hydrogen
Authors: Nuber, Jonas
Adamczak, A.
Abdou Ahmed, M.
Affolter, L.
Amaro, F. D. 
Amaro, Pedro
Antognini, A. 
Carvalho, P.
Chang, Y. -H.
Chen, T. -L.
Chen, W. -L.
Fernandes, L. M. P. 
Ferro, M.
Goeldi, D.
Graf, Thomas 
Guerra, M.
Hänsch, T. W. 
Henriques, C. A. O. 
Hildebrandt, M.
Indelicato, P. 
Kara, O.
Kirch, K.
Knecht, A.
Kottmann, F. 
Liu, Y.-W.
Machado, J. S. 
Marszalek, M.
Mano, R.D.P. 
Monteiro, C. M. B. 
Nez, F. 
Ouf, A.
Paul, N.
Pohl, R. 
Rapisarda, E.
Santos, J. M. F. dos 
Santos, J.P. 
Silva, P. A. O. C. 
Sinkunaite, L.
Shy, J. -T.
Schuhmann, K.
Rajamohanan, S.
Soter, A.
Sustelo, L.
Taqqu, David
Wang, L. -B.
Wauters, F.
Yzombard, P.
Zeyen, M.
Zhang, J.
Issue Date: 2023
Publisher: Institute of Economic Research, Nicolaus Copernicus University
Project: We acknowledge the support of the following grants: FCT - Fundação para a Ciência e a Tecnologia (Portugal) through national funds in the frame of projects PTDC/FIS-AQM/29611/2017 and UID/04559/2020 (LIBPhys); Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Initiative EXC 1098 PRISMA (194673446); Excellence Strategy EXC PRISMA+ (390831469) and DFG/ANR Project LASIMUS (DFG Grant Agreement 407008443); The French National Research Agency with project ANR-18-CE92-0030-02; The PESSOA Huber Curien Program 2022, Number 47863UE; The European Research Council (ERC) through CoG. #725039; and the Swiss National Science Foundation through the projects SNF 200021_165854 and SNF 200020_197052. 
Serial title, monograph or event: SciPost Physics Core
Volume: 6
Issue: 3
Abstract: The CREMA collaboration is pursuing a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen (μp) with 1 ppm accuracy by means of pulsed laser spectroscopy. In the proposed experiment, the μp atom is excited by a laser pulse from the singlet to the triplet hyperfine sub-levels, and is quenched back to the singlet state by an inelastic collision with a H2 molecule. The resulting increase of kinetic energy after this cycle modifies the μp atom diffusion in the hydrogen gas and the arrival time of the μp atoms at the target walls. This laser-induced modification of the arrival times is used to expose the atomic transition. In this paper we present the simulation of the μp diffusion in the H2 gas which is at the core of the experimental scheme. These simulations have been implemented with the Geant4 framework by introducing various low-energy processes including the motion of the H2 molecules, i.e. the effects related with the hydrogen target temperature. The simulations have been used to optimize the hydrogen target parameters (pressure, temperatures and thickness) and to estimate signal and background rates. These rates allow to estimate the maximum time needed to find the resonance and the statistical accuracy of the spectroscopy experiment.
ISSN: 2666-9366
DOI: 10.21468/SciPostPhysCore.6.3.057
Rights: openAccess
Appears in Collections:LIBPhys - Artigos em Revistas Internacionais

Show full item record

Page view(s)

checked on May 15, 2024


checked on May 15, 2024

Google ScholarTM




This item is licensed under a Creative Commons License Creative Commons