Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/114393
Title: Multifactorial skeletal age estimation in forensic anthropology and medicine: a machine learning approach
Other Titles: Estimativa multifatorial da idade-à-morte em antropologia e medicina forense: uma abordagem com "machine learning"
Authors: Navega, David Senhora
Orientador: Costa, Ernesto Jorge Fernandes
Cunha, Eugénia Maria Guedes Pinto Antunes da
Keywords: Antropologia forense; Idade esquelética; Estimativa da idade à morte; Inteligência artificial; Aprendizagem automática; Forensic anthropology; Skeletal age; Age estimation; Artificial intelligence; Machine learning
Issue Date: 31-Mar-2023
Serial title, monograph or event: Multifactorial skeletal age estimation in forensic anthropology and medicine: a machine learning approach
Place of publication or event: DCV, FCTUC
Abstract: A estimativa da idade à morte é uma etapa crucial no processo de identificação de restos humanos esqueléticos. No entanto, em indivíduos adultos, a sua avaliação é particularmente difícil de ser realizada com precisão devido à variabilidade dos processos de senescência. A literatura defende uma abordagem multifatorial para avaliação da idade esquelética de modo a obter estimativas mais exatas e precisas. Esta perspetiva pode ser conceptualmente argumentada como a mais eficaz, porque os diversos marcadores esqueléticos e a sua relação com a idade exibem diferentes trajetórias. Todavia, na estimativa da idade à morte em adultos prevalecem inconsistências metodológicas, uma vez que as técnicas que usam diversos marcadores esqueléticos resumem-se às suturas cranianas e às articulações pélvicas. Têm sido sugeridos procedimentos mais genéricos, mas com pouca utilização em contexto pericial porque requerem técnicas de seriação ou conhecimento matemático avançado. A presente tese procurou solucionar alguns dos problemas da estimativa da idade em adultos por meio de análise macroscópica tendo em conta diversos marcadores osteológicos. O principal objetivo foi desenvolver um novo método para estimativa de idade à morte em adultos usando uma abordagem interdisciplinar que une a antropologia forense e a inteligência artificial. Do ponto de vista antropológico foi proposta uma nova técnica para avaliação macroscópica que incorpora um total de 64 marcadores esqueléticos que cobrem as principais articulações e complexos músculo-esqueléticos, integrando marcadores bem estabelecidos com outros menos explorados. Para estabelecer um novo conjunto de dados de referência, foi estudada uma amostra composta por 500 esqueletos identificados provenientes de duas coleções osteológicas da Universidade de Coimbra (19-101 anos, 250 homens e 250 mulheres). Neste trabalho foi implementada e validada uma nova abordagem computacional tendo por base técnicas de inteligência artificial, concretamente redes neuronais artificiais profundas aleatorizadas. Nesta metodologia a estimativa da idade é tratada como um problema de regressão para a estimativa pontual e intervalar. Foram assim conduzidas computacionalmente duas experiências para testar o seu valor: na primeira, comparam-se modelos multivariados com modelos clássicos usando apenas regiões anatómicas específicas; na segunda avaliou-se a precisão da estimativa de idade a partir de modelos multivariados fracionados, que usam apenas uma parte das características esqueléticas escolhidas aleatoriamente. Os resultados com base na análise de validação cruzada, demonstram que a estimativa de idade a partir de remanescentes osteológicos pode ser inferida com precisão em toda a faixa etária adulta incluindo indivíduos com idade muito avançada, reduzindo erro médio absoluto de para seis anos aproximadamente. Praticamente todas as combinações aleatórias de marcadores ósseos resultaram em modelos com desempenho comparável ou superior ao dos modelos construídos de regiões anatómicas específicas, diminuindo em duas a seis vezes o erro médio absoluto e o viés de estimativa em comparação com os modelos padrão. Estes resultados reforçam a importância de uma análise multifatorial na estimativa da idade em adultos. Foi desenvolvido um novo software, DRNNAGE, para implementar o método supramencionado. O software possui uma interface intuitiva e é distribuído gratuitamente sob uma licença de código aberto.
Age-at-death assessment is a crucial step in the identification process of human skeletal remains. Nonetheless, in adult individuals this task is particularly difficult to achieve accurately due to the variability of the senescence processes. The literature argues in favor of a multifactorial approach to skeletal age assessment to obtain precise estimates. Conceptually a multifactorial perspective can be argued as the most effective approach because skeletal traits display different age-related trajectories and onsets. However, adult age estimation struggles with methodological inconsistencies. Techniques that use multiple skeletal indicators are often limited to the cranial sutures and the pelvic joints. More generic procedures for multifactorial analysis have also been proposed, but with poor adoption in forensic casework because they require seriation or advanced mathematical knowledge to be put into action.The present thesis aimed to lay a foundation to tackle some of the challenges of macroscopic adult skeletal age estimation, especially in its holistic or multifactorial aspect. The main objective of this work was to propose a new method for multifactorial age estimation using an interdisciplinary approach bridging anthropology and computer science. From an anthropological perspective, a novel macroscopic technique for skeletal analysis was developed. This proposal incorporates a total of 64 skeletal traits covering major joints and musculoskeletal complexes, integrating well established age-related markers with less explored ones. A dataset comprising information on 500 identified skeletons was used to establish a reference dataset (19–101 years old, 250 males and 250 females) for adult age estimation. A computational framework based on machine learning using randomized deep neural networks was implemented and validated. This approach tackled age estimation from a function approximation perspective as regression problem to infer both point and prediction interval estimates. Two experiments were conducted computationally to assess the value of the multifactorial approach: the first experiment compared multi-trait or multifactorial models against classic models using specific anatomical regions or skeletal traits only; the second experiment assessed the accuracy of age estimation from fractioned multifactorial models using randomly chosen traits. Based on cross-validation analysis, results demonstrate that age estimation from skeletal remains can be accurately inferred across the entire adult age span, approximately with 6 years mean absolute error. Informative estimates and prediction intervals can be obtained for the elderly population. Multifactorial models introduce a two-to-six-fold reduction in the mean absolute error and prediction bias compared to standard models. Virtually every combination of random traits resulted in models with comparable or better performance than the models built of specific anatomic regions as traditionally encounter in macroscopic age estimation methods. This finding supports the value of multifactorial age estimation over methods the focus solely on a single anatomical structure. A novel software, DRNNAGE, was built to operationalized and integrate the new method proposed in this thesis, providing an intuitive interface and freely distributed under an open-source license.
Description: Tese de Doutoramento em Antropologia apresentada à Faculdade de Ciências e Tecnologia
URI: https://hdl.handle.net/10316/114393
Rights: openAccess
Appears in Collections:UC - Teses de Doutoramento

Files in This Item:
File SizeFormat
david.s.navega-thesis.pdf37.19 MBAdobe PDFView/Open
Show full item record

Page view(s)

26
checked on May 22, 2024

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons