Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/109791
Title: SERPINA2 is a novel gene with a divergent function from SERPINA1
Authors: Marques, Patrícia Isabel
Ferreira, Zélia
Martins, Manuella
Figueiredo, Joana
Silva, Diana Isabel
Castro, Patrícia 
Morales-Hojas, Ramiro
Correia, Joana Simões 
Seixas, Susana
Issue Date: 2013
Publisher: Public Library of Science
Project: This work was supported by the Portuguese Foundation for Science and Technology (FCT), project grant to SS – PTDC/SAU-GMG/64043/2006. PIM (SFRH/BD/68940/2010), ZF (SFRH/BD/45907/2008), JF (SFRH/BD/43763/2008), PC (SFRH/BPD/26553/2006), and JSC (SFRH/BPD/48765/2008) are supported by FCT fellowships and funded by POPH-QREN – Promotion of scientific employment, supported by the European Social Fund and national funds of the Ministry of Education and Science. SS and RMH are supported by the programme ‘‘Cieˆncia 2007’’, financed by the POPH-QREN – Promotion of scientific employment, cofinanced by the European Social Fund and national funds of the Ministry of Education and Science. Institute of Molecular Pathology and Immunology of the University of Porto is an Associate Laboratory of the Portuguese Ministry of Education and Science and is partially supported by FCT. 
Serial title, monograph or event: PLoS ONE
Volume: 8
Issue: 6
Abstract: Serine protease inhibitors (SERPINs) are a superfamily of highly conserved proteins that play a key role in controlling the activity of proteases in diverse biological processes. The SERPIN cluster located at the 14q32.1 region includes the gene coding for SERPINA1, and a highly homologous sequence, SERPINA2, which was originally thought to be a pseudogene. We have previously shown that SERPINA2 is expressed in different tissues, namely leukocytes and testes, suggesting that it is a functional SERPIN. To investigate the function of SERPINA2, we used HeLa cells stably transduced with the different variants of SERPINA2 and SERPINA1 (M1, S and Z) and leukocytes as the in vivo model. We identified SERPINA2 as a 52 kDa intracellular glycoprotein, which is localized at the endoplasmic reticulum (ER), independently of the variant analyzed. SERPINA2 is not significantly regulated by proteasome, proposing that ER localization is not due to misfolding. Specific features of SERPINA2 include the absence of insoluble aggregates and the insignificant response to cell stress, suggesting that it is a non-polymerogenic protein with divergent activity of SERPINA1. Using phylogenetic analysis, we propose an origin of SERPINA2 in the crown of primates, and we unveiled the overall conservation of SERPINA2 and A1. Nonetheless, few SERPINA2 residues seem to have evolved faster, contributing to the emergence of a new advantageous function, possibly as a chymotrypsin-like SERPIN. Herein, we present evidences that SERPINA2 is an active gene, coding for an ER-resident protein, which may act as substrate or adjuvant of ER-chaperones.
URI: https://hdl.handle.net/10316/109791
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0066889
Rights: openAccess
Appears in Collections:I&D IBILI - Artigos em Revistas Internacionais
FMUC Medicina - Artigos em Revistas Internacionais

Files in This Item:
Show full item record

Page view(s)

45
checked on Apr 24, 2024

Download(s)

38
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons