Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/108532
Title: Long-Term Treatment with Low Doses of Methamphetamine Promotes Neuronal Differentiation and Strengthens Long-Term Potentiation of Glutamatergic Synapses onto Dentate Granule Neurons
Authors: Baptista, Sofia 
Lourenço, Joana
Milhazes, Nuno 
Borges, Fernanda
Silva, Ana Paula 
Bacci, Alberto
Keywords: ADHD; dentate gyrus; methamphetamine; neurogenesis; synaptic plasticity
Issue Date: 2016
Publisher: Society for Neuroscience
Project: This work was supported by fellowship SFRH/BD/63773/2009 from the Foundation for Science and Technology, Portugal; was cofinanced by Quadro de Referência Estratégica Nacional (S.B.), strategic project UID/NEU/04539/2013 (A.P.S.), and the European Research Council (ERC) under the 7th Framework Programme for the European Community (FP7/2007-2013)/ERC Grant agreement No. 200808); “Investissements d’avenir” ANR-10-IAIHU-06; Agence Nationale de la Recherche (ANR-13-BSV4-0015-01), Fondation Recherche Médicale (Equipe FRM DEQ20150331684), and a grant from the Institut du Cerveau et de la Moelle épinière (Paris) (A.B.). A.B. is supported by a 2014 NARSAD Independent Investigator Grant from the Brain and Behavior Research Foundation. 
Serial title, monograph or event: eNeuro
Volume: 3
Issue: 3
Abstract: Methamphetamine (METH) is a psychostimulant, affecting hippocampal function with disparate cognitive effects, which depends on the dose and time of administration, ranging from improvement to impairment of memory. Importantly, in the United States, METH is approved for the treatment of attention deficit hyperactivity disorder. Modifications of long-term plasticity of synapses originating from the entorhinal cortex onto dentate granule cells (DGCs) have been proposed to underlie cognitive alterations similar to those seen in METH users. However, the effects of METH on synaptic plasticity of the dentate gyrus are unknown. Here, we investigated the impact of long-term administration of METH (2 mg/kg/d) on neurogenesis and synaptic plasticity of immature and mature DGCs of juvenile mice. We used a mouse model of neurogenesis (the G42 line of GAD67-GFP), in which GFP is expressed by differentiating young DGCs. METH treatment enhanced the differentiation of GFP(+) cells, as it increased the fraction of GFP(+) cells expressing the neuronal marker NeuN, and decreased the amount of immature DGCs coexpressing doublecortin. Interestingly, METH did not change the magnitude of long-term potentiation (LTP) in more immature neurons, but facilitated LTP induction in more differentiated GFP(+) and strengthened plasticity in mature GFP(-) DGCs. The METH-induced facilitation of LTP in GFP(+) neurons was accompanied with spine enlargement. Our results reveal a specific action of long-term use of METH in the long-term plasticity of excitatory synapses onto differentiating DGCs and might have important implications toward the understanding of the synaptic basis of METH-induced cognitive alterations.
URI: https://hdl.handle.net/10316/108532
ISSN: 2373-2822
DOI: 10.1523/ENEURO.0141-16.2016
Rights: openAccess
Appears in Collections:I&D IBILI - Artigos em Revistas Internacionais
FMUC Medicina - Artigos em Revistas Internacionais

Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons