Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/107755
Campo DCValorIdioma
dc.contributor.authorSánchez-López, Elena-
dc.contributor.authorEttcheto, Miren-
dc.contributor.authorEgea, Maria Antonia-
dc.contributor.authorEspina, Marta-
dc.contributor.authorCano, Amanda-
dc.contributor.authorCalpena, Ana Cristina-
dc.contributor.authorCamins, Antoni-
dc.contributor.authorCarmona, Nuria-
dc.contributor.authorSilva, Amelia M.-
dc.contributor.authorSouto, Eliana B.-
dc.contributor.authorGarcía, Maria Luisa-
dc.date.accessioned2023-07-31T10:40:11Z-
dc.date.available2023-07-31T10:40:11Z-
dc.date.issued2018-03-27-
dc.identifier.issn1477-3155pt
dc.identifier.urihttps://hdl.handle.net/10316/107755-
dc.description.abstractBackground: Memantine, drug approved for moderate to severe Alzheimer’s disease, has not shown to be fully effective. In order to solve this issue, polylactic-co-glycolic (PLGA) nanoparticles could be a suitable solution to increase drug’s action on the target site as well as decrease adverse effects. For these reason, Memantine was loaded in biodegradable PLGA nanoparticles, produced by double emulsion method and surface-coated with polyethylene glycol. MEM–PEG–PLGA nanoparticles (NPs) were aimed to target the blood–brain barrier (BBB) upon oral administration for the treatment of Alzheimer’s disease. Results: The production parameters were optimized by design of experiments. MEM–PEG–PLGA NPs showed a mean particle size below 200 nm (152.6 ± 0.5 nm), monomodal size distribution (polydispersity index, PI < 0.1) and negative surface charge (− 22.4 mV). Physicochemical characterization of NPs confirmed that the crystalline drug was dispersed inside the PLGA matrix. MEM–PEG–PLGA NPs were found to be non-cytotoxic on brain cell lines (bEnd.3 and astrocytes). Memantine followed a slower release profile from the NPs against the free drug solution, allowing to reduce drug administration frequency in vivo. Nanoparticles were able to cross BBB both in vitro and in vivo. Behavioral tests carried out on transgenic APPswe/PS1dE9 mice demonstrated to enhance the benefit of decreasing memory impairment when using MEM–PEG–PLGA NPs in comparison to the free drug solution. Histological studies confirmed that MEM–PEG–PLGA NPs reduced β-amyloid plaques and the associated inflammation characteristic of Alzheimer’s disease. Conclusions: Memantine NPs were suitable for Alzheimer’s disease and more effective than the free drug.pt
dc.language.isoengpt
dc.publisherSpringer Naturept
dc.relationSpanish Ministry of Science and Innovation (MAT 2014-59134-R projects)pt
dc.relationSpanish Ministry - PhD scholarship FPI-MICINN (BES-2012-056083)pt
dc.relationAgustí Pere i Pons Institution.pt
dc.relationM-ERA-NET-0004/2015pt
dc.relationUID/AGR/04033/2013pt
dc.relationUID/QUI/50006/2013pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectMemantinept
dc.subjectNanoparticlespt
dc.subjectAlzheimer’s diseasept
dc.subjectBrain targetingpt
dc.subjectAPPswe/PS1dE9 micept
dc.subjectβ-Amyloid plaquespt
dc.subjectbEnd.3pt
dc.subjectAstrocytespt
dc.subject.meshAdministration, Oralpt
dc.subject.meshAlzheimer Diseasept
dc.subject.meshAmyloid beta-Peptidespt
dc.subject.meshAnimalspt
dc.subject.meshAntiparkinson Agentspt
dc.subject.meshAstrocytespt
dc.subject.meshBlood-Brain Barrierpt
dc.subject.meshCell Linept
dc.subject.meshCell Survivalpt
dc.subject.meshCognitive Dysfunctionpt
dc.subject.meshDisease Models, Animalpt
dc.subject.meshDrug Compoundingpt
dc.subject.meshEmulsionspt
dc.subject.meshHumanspt
dc.subject.meshMalept
dc.subject.meshMaze Learningpt
dc.subject.meshMemantinept
dc.subject.meshMicept
dc.subject.meshMice, Transgenicpt
dc.subject.meshNanoparticlespt
dc.subject.meshNeuronspt
dc.subject.meshParticle Sizept
dc.subject.meshPlaque, Amyloidpt
dc.subject.meshPolyesterspt
dc.subject.meshPolyethylene Glycolspt
dc.subject.meshDrug Carrierspt
dc.titleMemantine loaded PLGA PEGylated nanoparticles for Alzheimer's disease: in vitro and in vivo characterizationpt
dc.typearticle-
degois.publication.firstPage32pt
degois.publication.issue1pt
degois.publication.titleJournal of Nanobiotechnologypt
dc.peerreviewedyespt
dc.identifier.doi10.1186/s12951-018-0356-zpt
degois.publication.volume16pt
dc.date.embargo2018-03-27*
uc.date.periodoEmbargo0pt
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.fulltextCom Texto completo-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.orcid0000-0003-2571-108X-
crisitem.author.orcid0000-0001-9567-4283-
crisitem.author.orcid0000-0002-9737-6017-
Aparece nas coleções:FFUC- Artigos em Revistas Internacionais
Mostrar registo em formato simples

Visualizações de página

71
Visto em 14/ago/2024

Downloads

44
Visto em 14/ago/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons