Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/107611
Title: Reactive Oxygen Species Deficiency Due to Ncf1-Mutation Leads to Development of Adenocarcinoma and Metabolomic and Lipidomic Remodeling in a New Mouse Model of Dextran Sulfate Sodium-Induced Colitis
Authors: Carvalho, Lina 
Gomes, Joana R. M. 
Tavares, Ludgero C. 
Xavier, Ana R.
Klika, Karel D.
Holmdahl, Rikard
Carvalho, Rui A. 
Carneiro, Maria Margarida Souto 
Keywords: reactive oxygen species; dextran sulfate sodium; adenocarcinoma; colitis; metabolism; nicotinamide adenine dinucleotide phosphate oxidase; nuclear magnetic resonance; lipids
Issue Date: 2018
Publisher: Frontiers Media S.A.
Project: Marie Curie grant PERG-GA-2008-239422 
project CENTRO-01-0145-FEDER-000012-HealthyAging2020 
project POCI-01- 0145-FEDER-007440 
project Pest/C-SAU/LA0001/2013-2014 
Swedish Research Council grant 2015-02662 and the Knut and Alice Wallenberg grant KAW 2015.0063 foundation 
Serial title, monograph or event: Frontiers in Immunology
Volume: 9
Issue: MAY
Abstract: Inflammatory bowel disease is characterized by chronic relapsing idiopathic inflammation of the gastrointestinal tract and persistent inflammation. Studies focusing on the immune-regulatory function of reactive oxygen species (ROS) are still largely missing. In this study, we analyzed an ROS-deficient mouse model leading to colon adenocarcinoma. Colitis was induced with dextran sulfate sodium (DSS) supplied via the drinking water in wild-type (WT) and Ncf1-mutant (Ncf1) B10.Q mice using two different protocols, one mimicking recovery after acute colitis and another simulating chronic colitis. Disease progression was monitored by evaluation of clinical parameters, histopathological analysis, and the blood serum metabolome using 1H nuclear magnetic resonance spectroscopy. At each experimental time point, colons and spleens from some mice were removed for histopathological analysis and internal clinical parameters. Clinical scores for weight variation, stool consistency, colorectal bleeding, colon length, and spleen weight were significantly worse for Ncf1 than for WT mice. Ncf1 mice with only a 7-day exposure to DSS followed by a 14-day resting period developed colonic distal high-grade dysplasia in contrast to the low-grade dysplasia found in the colon of WT mice. After a 21-day resting period, there was still β-catenin-rich inflammatory infiltration in the Ncf1 mice together with high-grade dysplasia and invasive well-differentiated adenocarcinoma, while in the WT mice, high-grade dysplasia was prominent without malignant invasion and only low inflammation. Although exposure to DSS generated less severe histopathological changes in the WT group, the blood serum metabolome revealed an increased fatty acid content with moderate-to-strong correlations to inflammation score, weight variation, colon length, and spleen weight. Ncf1 mice also displayed a similar pattern but with lower coefficients and showed consistently lower glucose and/or higher lactate levels which correlated with inflammation score, weight variation, and spleen weight. In our novel, DSS-induced colitis animal model, the lack of an oxidative burst ROS was sufficient to develop adenocarcinoma, and display altered blood plasma metabolic and lipid profiles. Thus, oxidative burst seems to be necessary to prevent evolution toward cancer and may confer a protective role in a ROS-mediated self-control mechanism.
URI: https://hdl.handle.net/10316/107611
ISSN: 1664-3224
DOI: 10.3389/fimmu.2018.00701
Rights: openAccess
Appears in Collections:I&D CFE - Artigos em Revistas Internacionais
I&D CNC - Artigos em Revistas Internacionais
FMUC Medicina - Artigos em Revistas Internacionais

Show full item record

SCOPUSTM   
Citations

5
checked on Apr 22, 2024

WEB OF SCIENCETM
Citations

5
checked on Apr 2, 2024

Page view(s)

58
checked on Apr 23, 2024

Download(s)

14
checked on Apr 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons