Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/106300
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fiolhais, M. C. N. | - |
dc.contributor.author | Gonçalo, R. | - |
dc.contributor.author | Veloso, F. | - |
dc.contributor.author | Wolters, H. | - |
dc.contributor.author | ATLAS Collaboration | - |
dc.date.accessioned | 2023-03-29T09:18:40Z | - |
dc.date.available | 2023-03-29T09:18:40Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | https://hdl.handle.net/10316/106300 | - |
dc.description.abstract | A search for new physics with non-resonant signals in dielectron and dimuon final states in the mass range above 2 TeV is presented. This is the first search for non-resonant signals in dilepton final states at the LHC to use a background estimate from the data. The data, corresponding to an integrated luminosity of 139 fb−1, were recorded by the ATLAS experiment in proton-proton collisions at a center-of-mass energy of s = 13 TeV during Run 2 of the Large Hadron Collider. The benchmark signal signature is a two-quark and two-lepton contact interaction, which would enhance the dilepton event rate at the TeV mass scale. To model the contribution from background processes a functional form is fit to the dilepton invariant-mass spectra in data in a mass region below the region of interest. It is then extrapolated to a high-mass signal region to obtain the expected background there. No significant deviation from the expected background is observed in the data. Upper limits at 95% CL on the number of events and the visible cross-section times branching fraction for processes involving new physics are provided. Observed (expected) 95% CL lower limits on the contact interaction energy scale reach 35.8 (37.6) TeV. | pt |
dc.description.sponsorship | We thank CERN for the very successful operation of the LHC, as well as the support sta from our institutions without whom ATLAS could not be operated e ciently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ S, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Sk lodowska-Curie Actions and COST, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co- nanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G oran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [52]. | pt |
dc.language.iso | eng | pt |
dc.publisher | Springer Nature | pt |
dc.rights | openAccess | pt |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt |
dc.subject | Hadron-Hadron scattering (experiments) | pt |
dc.title | Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector | pt |
dc.type | article | - |
degois.publication.firstPage | 5 | pt |
degois.publication.issue | 11 | pt |
degois.publication.title | Journal of High Energy Physics | pt |
dc.peerreviewed | yes | pt |
degois.publication.volume | 2020 | pt |
dc.date.embargo | 2020-01-01 | * |
uc.date.periodoEmbargo | 0 | pt |
item.languageiso639-1 | en | - |
item.fulltext | Com Texto completo | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | open | - |
crisitem.author.researchunit | LIP – Laboratory of Instrumentation and Experimental Particle Physics | - |
crisitem.author.researchunit | LIP – Laboratory of Instrumentation and Experimental Particle Physics | - |
crisitem.author.researchunit | LIP – Laboratory of Instrumentation and Experimental Particle Physics | - |
crisitem.author.orcid | 0000-0002-3826-3442 | - |
crisitem.author.orcid | 0000-0002-9588-1773 | - |
Appears in Collections: | FCTUC Física - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Search-for-new-nonresonant-phenomena-in-highmass-dilepton-final-states-with-the-ATLAS-detectorJournal-of-High-Energy-Physics.pdf | 2.19 MB | Adobe PDF | View/Open |
Page view(s)
21
checked on Nov 28, 2023
Download(s)
2
checked on Nov 28, 2023
Google ScholarTM
Check
This item is licensed under a Creative Commons License