Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/106035
DC FieldValueLanguage
dc.contributor.authorVeloso, F.-
dc.contributor.authorWolters, H.-
dc.contributor.authorATLAS Collaboration-
dc.date.accessioned2023-03-16T10:28:15Z-
dc.date.available2023-03-16T10:28:15Z-
dc.date.issued2020-
dc.identifier.urihttps://hdl.handle.net/10316/106035-
dc.description.abstractElectron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for the ATLAS experiment to record signals for a wide variety of physics: from StandardModel processes to searches for new phenomena in both proton–proton and heavy-ion collisions. To cope with a fourfold increase of peak LHC luminosity from 2015 to 2018 (Run 2), to 2.1 × 1034 cm−2 s−1, and a similar increase in the number of interactions per beamcrossing to about 60, trigger algorithms and selections were optimised to control the rates while retaining a high efficiency for physics analyses. For proton–proton collisions, the single-electron trigger efficiency relative to a single-electron offline selection is at least 75% for an offline electron of 31 GeV, and rises to 96% at 60 GeV; the trigger efficiency of a 25GeVleg of the primary diphoton trigger relative to a tight offline photon selection is more than 96% for an offline photon of 30 GeV. For heavy-ion collisions, the primary electron and photon trigger efficiencies relative to the corresponding standard offline selections are at least 84% and 95%, respectively, at 5 GeV above the corresponding trigger threshold.pt
dc.description.sponsorshipWe thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS,MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR;MESTD, Serbia; MSSR, Slovakia; ARRS andMIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’ Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos,Thales and Aristeia programmes co-financed by EUESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from allWLCG partners is acknowledged gratefully, in particular from CERN, theATLAS Tier-1 facilities at TRIUMF (Canada),NDGF(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [53].pt
dc.language.isoengpt
dc.publisherSpringer Naturept
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.titlePerformance of electron and photon triggers in ATLAS during LHC Run 2pt
dc.typearticle-
degois.publication.firstPage47pt
degois.publication.issue1pt
degois.publication.titleEuropean Physical Journal Cpt
dc.peerreviewedyespt
dc.identifier.doi10.1140/epjc/s10052-019-7500-2pt
degois.publication.volume80pt
dc.date.embargo2020-01-01*
uc.date.periodoEmbargo0pt
item.fulltextCom Texto completo-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.orcid0000-0002-9588-1773-
Appears in Collections:FCTUC Física - Artigos em Revistas Internacionais
Show simple item record

Page view(s)

60
checked on Jul 24, 2024

Download(s)

37
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons