Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/10462
Title: Interplay of Electrostatic and Hydrophobic Effects with Binding of Cationic Gemini Surfactants and a Conjugated Polyanion: Experimental and Molecular Modeling Studies
Authors: Burrows, Hugh D. 
Tapia, María J. 
Silva, Cláudia L. 
Pais, Alberto A. C. C. 
Fonseca, Sofia M. 
Pina, João 
Melo, J. Seixas de 
Wang, Yujie 
Marques, Eduardo F. 
Knaapila, Matti
Monkman, Andrew P. 
Garamus, Vasil M.
Pradhan, Swapna 
Scherf, Ullrich 
Issue Date: 3-May-2007
Publisher: American Chemical Society
Citation: The Journal of Physical Chemistry B. 111:17 (2007) 4401-4410
Abstract: Understanding factors responsible for the fluorescence behavior of conjugated polyelectrolytes and modulation of their behavior are important for their application as functional materials. The interaction between the anionic poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl}copolymer (PBS−PFP) and cationic gemini surfactants α,ω-(CmH2m+1N+(CH3)2)2(CH2)s(Br-)2 (m-s-m; m = 12, s = 2, 3, 5, 6, 10, and 12) has been studied experimentally in aqueous solution. These surfactants are chosen to see whether molecular recognition and self-assembly occurs between the oppositely charged conjugated polyelectrolyte and gemini surfactant when the spacer length on the surfactant is similar to the intercharge separation on the polymer. Without surfactants, PBS−PFP exists as aggregates. These are broken up upon addition of gemini surfactants. However, as anticipated, the behavior strongly depends upon spacer length (s). Fluorescence measurements show three surfactant concentration regimes: At low concentrations (<2 × 10-6 M) quenching occurs and is most marked with the small spacer 12-2-12; at intermediate concentrations (2 × 10-6−10-3 M), fluorescence intensity is constant, with a 12-carbon spacer 12-12-12 showing the strongest fluorescence; above the critical micelle concentration (CMC; 10-3 M) increases in emission intensity are seen in all cases and are largest with the intermediate spacers 12-5-12 and 12-6-12, where the spacer length most closely matches the distance between monomer units on the polymer. With longer spacer length surfactants, surface tension measurements for concentrations below the CMC reveal the presence of polymer−surfactant aggregates at the air−water interface, possibly reflecting increased hydrophobicity. Above the CMC, small-angle neutron scattering experiments for the 12-6-12 system show the presence of spherical aggregates, both for the pure surfactant and for polyelectrolyte/gemini mixtures. Molecular dynamics simulations help rationalize these observations and show that there is a very fine balance between electrostatic and hydrophobic interactions. With the shortest spacer 12-2-12, Coulombic interactions are dominant, while for the longest spacer 12-12-12 the driving force involves hydrophobic interactions. Qualitatively, with the intermediate 12-5-12 and 12-6-12 systems, the optimum balance is observed between Coulombic and hydrophobic interactions, explaining their strong fluorescence enhancement.
URI: https://hdl.handle.net/10316/10462
ISSN: 1520-6106
DOI: 10.1021/jp070100s
Rights: openAccess
Appears in Collections:FFUC- Artigos em Revistas Internacionais
FCTUC Química - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
Interplay of Electrostatic and Hydrophobic Effects.pdf391.72 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

69
checked on Apr 15, 2024

WEB OF SCIENCETM
Citations 1

64
checked on Mar 2, 2024

Page view(s) 50

600
checked on Apr 16, 2024

Download(s) 50

547
checked on Apr 16, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.