Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/103784
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Naia, Luana Carvalho | - |
dc.contributor.author | Pinho, Catarina M. | - |
dc.contributor.author | Dentoni, Giacomo | - |
dc.contributor.author | Liu, Jianping | - |
dc.contributor.author | Leal, Nuno Santos | - |
dc.contributor.author | Ferreira, Duarte M. S. | - |
dc.contributor.author | Schreiner, Bernadette | - |
dc.contributor.author | Filadi, Riccardo | - |
dc.contributor.author | Fão, Lígia | - |
dc.contributor.author | Connolly, Niamh M. C. | - |
dc.contributor.author | Forsell, Pontus | - |
dc.contributor.author | Nordvall, Gunnar | - |
dc.contributor.author | Shimozawa, Makoto | - |
dc.contributor.author | Greotti, Elisa | - |
dc.contributor.author | Basso, Emy | - |
dc.contributor.author | Theurey, Pierre | - |
dc.contributor.author | Gioran, Anna | - |
dc.contributor.author | Joselin, Alvin | - |
dc.contributor.author | Arsenian-Henriksson, Marie | - |
dc.contributor.author | Nilsson, Per | - |
dc.contributor.author | Rego, A. Cristina | - |
dc.contributor.author | Ruas, Jorge L. | - |
dc.contributor.author | Park, David | - |
dc.contributor.author | Bano, Daniele | - |
dc.contributor.author | Pizzo, Paola | - |
dc.contributor.author | Prehn, Jochen H. M. | - |
dc.contributor.author | Ankarcrona, Maria | - |
dc.date.accessioned | 2022-11-28T09:48:00Z | - |
dc.date.available | 2022-11-28T09:48:00Z | - |
dc.date.issued | 2021-03-24 | - |
dc.identifier.issn | 1741-7007 | pt |
dc.identifier.uri | https://hdl.handle.net/10316/103784 | - |
dc.description.abstract | Background: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. Results: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. Conclusion: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases. | pt |
dc.description.sponsorship | The present work was performed within the consortium CeBioND – Cellular Bioenergetics in Neurodegenerative Diseases, supported by the EU Joint Programme - Neurodegenerative Disease Research (JPND). MA lab is supported by the Swedish Research Council (Dnr 2018-03102), the Swedish Brain Foundation (Hjärnfonden), the Swedish Alzheimer Foundation (Alzheimerfonden), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 676144 (Synaptic Dysfunction in Alzheimer Disease, SyDAD), and the Gun och Bertil Stohnes and Gamla Tjänarinnor Foundations (Stockholm). CMP and LN received post-doctoral grants from Olle Engkvist Foundation (Stockholm). PN lab is supported by Hållstens forskningsstiftelse, Hjärnfonden, and Alzheimerfonden. PP lab is supported by University of Padova, Italy (SID 2019), Italian Ministry of University and Scientific Research (PRIN2017XA5J5N), Fondazione Cassa di Risparmio di Padua e Rovigo (CARIPARO Foundation) Excellence project 2017 (2018/113), UNIPD Funds for Research Equipment-2015 and Euro Bioimaging Project Roadmap/ESFRI from European Commission. JHMP is supported by Science Foundation Ireland (14/JPND/B3077 and SFI FutureNeuro Research Centre 16/RC/3948, co-funded under the European Regional Development Fund and FutureNeuro industry partners). Open Access funding provided by Karolinska Institute. | pt |
dc.language.iso | eng | pt |
dc.publisher | Springer Nature | pt |
dc.relation | Marie Skłodowska-Curie | pt |
dc.rights | openAccess | pt |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt |
dc.subject | High-throughput screen | pt |
dc.subject | Mitochondria | pt |
dc.subject | Luteolin | pt |
dc.subject | Mitochondria-ER contacts | pt |
dc.subject | Mitochondrial calcium | pt |
dc.subject.mesh | Animals | pt |
dc.subject.mesh | Cell Line, Tumor | pt |
dc.subject.mesh | Drug Evaluation, Preclinical | pt |
dc.subject.mesh | Endoplasmic Reticulum | pt |
dc.subject.mesh | High-Throughput Screening Assays | pt |
dc.subject.mesh | Humans | pt |
dc.subject.mesh | Luteolin | pt |
dc.subject.mesh | Mice | pt |
dc.subject.mesh | Mitochondria | pt |
dc.subject.mesh | Neurons | pt |
dc.subject.mesh | Signal Transduction | pt |
dc.title | Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling | pt |
dc.type | article | - |
degois.publication.firstPage | 57 | pt |
degois.publication.issue | 1 | pt |
degois.publication.title | BMC Biology | pt |
dc.peerreviewed | yes | pt |
dc.identifier.doi | 10.1186/s12915-021-00979-5 | pt |
degois.publication.volume | 19 | pt |
dc.date.embargo | 2021-03-24 | * |
uc.date.periodoEmbargo | 0 | pt |
item.languageiso639-1 | en | - |
item.fulltext | Com Texto completo | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
crisitem.project.grantno | Developing talents, advancing research | - |
crisitem.author.researchunit | CNC - Center for Neuroscience and Cell Biology | - |
crisitem.author.researchunit | CNC - Center for Neuroscience and Cell Biology | - |
crisitem.author.orcid | 0000-0002-0886-4634 | - |
crisitem.author.orcid | 0000-0003-1497-7894 | - |
crisitem.author.orcid | 0000-0003-0700-3776 | - |
Aparece nas coleções: | I&D CNC - Artigos em Revistas Internacionais FMUC Medicina - Artigos em Revistas Internacionais |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
s12915-021-00979-5.pdf | 6.96 MB | Adobe PDF | Ver/Abrir |
Citações SCOPUSTM
26
Visto em 4/nov/2024
Citações WEB OF SCIENCETM
23
Visto em 2/nov/2024
Visualizações de página
102
Visto em 5/nov/2024
Downloads
45
Visto em 5/nov/2024
Google ScholarTM
Verificar
Altmetric
Altmetric
Este registo está protegido por Licença Creative Commons